
Understanding Parallel IO
through profiling

Luca Parisi, EPCC, The University of Edinburgh
l.parisi@epcc.ed.ac.uk

21 February 2020
www.archer2.ac.uk

http://www.archer2.ac.uk/

EPCC, The University of Edinburgh 2

• Introduction to the IO software stack
• The Darshan profiler
• Write a 2D array to disk: file per process, single shared file,

mpiio
• Netkar++ example

Outline

The software stack

EPCC, The University of Edinburgh 3

Filesystem (Lustre)

POSIX STDIO

MPIIO

HDF5

Your application

libc libraries,
single
process calls

Use mpi to aggregate data from
multiple process on a single file

Save both data and metadata
information on files

Calls the high livel library

Network file
system

The darshan tool

EPCC, The University of Edinburgh 4

Filesystem (Lustre)

POSIX STDIO

MPIIO

HDF5

Your application
Darshan profiles multiple
layers of the software stack

D
ar

sh
an

2D Array

EPCC, The University of Edinburgh
5

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (3,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

Rank 0 Rank 1

Rank 2 Rank 3 • Logical 2D array
• Column storage (Fortran like)

(0,0) (1,0) (0,1) (1,1)Rank 0

(2,2) (3,2) (2,3) (3,3)

(0,2) (1,2) (0,3) (1,3)

(2,0) (3,0) (2,1) (3,1)

Rank 1

Rank 2

Rank 3

File per process

6

File per process

EPCC, The University of Edinburgh

7

• Each process writes
their own data to a
different file
• Efficient
• Data management is

difficult

F0.dat

Node 1

Rank 0

Rank 1

Rank 2

Rank 3
3

2

3

4

(0,0) (1,0) (0,1) (1,1)

F1.dat (0,2) (1,2) (0,3) (1,3)

(2,0) (3,0) (2,1) (3,1)

(2,2) (3,2) (2,3) (3,3)

F2.dat

F3.dat

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

Write Bandwidth

File Performance

File Per Process 16 GB/s

EPCC, The University of Edinburgh 8

Using 4 nodes, 10 ranks per node

Using Darshan

9

Using Darshan

• Load Darshan

module load darshan

• Run you executable as usual
srun app.exe

Any application launched trough srun will be linked to Darshan and
profiled.

EPCC, The University of Edinburgh 10

Finding the darshan profile
Darshan saves all files in a common directory specified during installation.

$ darshan-config --log-path
/work/z19/z19/lparisi/courses/io/io_webinar/sw/darshan/darsha
n-logs

The log directory contains subfolders named as year/month/day .

Ex: For a job run on the 23th of January,

the .darshan profile can be found in

${LOG_DIR}/2024/1/23

EPCC, The University of Edinburgh 11

Generating a PDF report

• Generate a summary pdf report

darshan-job-summary.pl fp40.darshan

• Generate a summary pdf report. If your application writes to a lot file,
you might want to proceed with caution.

darshan-summary-per-file.sh fp40.darshan
reports_per_file_dir

EPCC, The University of Edinburgh 12

Darshan Report

EPCC, The University of Edinburgh 13

What is the
overall
bandwidth ?

What job did
we run ?

How many IO
operations ?

What is the
fraction of
runtime doing
IO ?

Darshan Report

EPCC, The University of Edinburgh 14

• 4 nodes x 10 ranks per
node = 40 processors
• 8 writes per processor
• Each write is about

2GiB write , except one
• Data written is about

15GiB per file

Darshan Report

EPCC, The University of Edinburgh 15

Roughly the
same time
spent writing
per process

Shows a timeline of all POSIX and STDIO output

Darshan Summary

• Generate the textual summary report

darshan-parser posix_file_per_process.darshan >
summary_posix_file_per_process.txt

• To collect statistics per rank, without aggregating aver all process , disable
shared reduction before launching the job

export DARSHAN_DISABLE_SHARED_REDUCTION=1

EPCC, The University of Edinburgh 16

Darshan Summary

EPCC, The University of Edinburgh 17

#<module> <rank> <record id> <counter> <value> <file name> <mount pt> <fs type>

POSIX 0 10315675029492807030 POSIX_OPENS 1 /mnt/lustre/a2fs-
work4/work/z19/z19/lparisi/io_data/posix/data0.out /mnt/lustre/a2fs-work4 lustre

POSIX 0 10315675029492807030 POSIX_FILENOS 0 /mnt/lustre/a2fs-
work4/work/z19/z19/lparisi/io_data/posix/data0.out /mnt/lustre/a2fs-work4 lustre

POSIX 0 10315675029492807030 POSIX_DUPS 0 /mnt/lustre/a2fs-
work4/work/z19/z19/lparisi/io_data/posix/data0.out /mnt/lustre/a2fs-work4 lustre

POSIX 0 10315675029492807030 POSIX_READS 0 /mnt/lustre/a2fs-
work4/work/z19/z19/lparisi/io_data/posix/data0.out /mnt/lustre/a2fs-work4 lustre

POSIX 0 10315675029492807030 POSIX_WRITES 8 /mnt/lustre/a2fs-
work4/work/z19/z19/lparisi/io_data/posix/data0.out /mnt/lustre/a2fs-work4 lustre

Darshan Tracing

• Enable Tracing before launching the job
export DXT_ENABLE_IO_TRACE=1

• Generate the trace textual report

darshan-dxt-parser posix_file_per_process.darshan >
trace_posix_file_per_process.txt

EPCC, The University of Edinburgh 18

Darshan Tracing – File Per Process

• # DXT, file_id: 1514362557366186124, file_name: /mnt/lustre/a2fs-
work4/work/z19/z19/lparisi/io_data/posix/data2.out

• # DXT, rank: 2, hostname: nid001848
• # DXT, write_count: 8, read_count: 0
• # DXT, mnt_pt: /mnt/lustre/a2fs-work4, fs_type: lustre
• # DXT, Lustre stripe_size: 1048576, Lustre stripe_count: 1
• # DXT, Lustre OST obdidx: 5
• # Module Rank Wt/Rd Segment Offset Length Start(s) End(s) [OST]
• X_POSIX 2 write 0 0 2147479552 13.7719 18.6430 [5]
• X_POSIX 2 write 1 2147479552 2147479552 18.6430 23.4592 [5]
• X_POSIX 2 write 2 4294959104 2147479552 23.4679 28.6368 [5]

EPCC, The University of Edinburgh 19

Single shared file

20

Shared file

EPCC, The University of Edinburgh
21

• Write in parallel to a single shared file
• Each process write its own data to a separate section of the file
• Works for POSIX on LUSTRE, but not STDIO

OST 12

Node 1

Rank 0 Rank 1

Rank 2
Rank 3

1

2

3

4F.dat (0,0) (1,0) (0,1) (1,1) (0,2) (1,2) (0,3) (1,3) (2,0) (3,0) (2,1) (3,1) (2,2) (3,2) (2,3) (3,3)

Write Bandwidth

File Striping Performance

File Per Process 16 GB/s

Shared File POSIX 3 GB/s

EPCC, The University of Edinburgh 22

Using 4 nodes, 10 ranks per node

Lustre

EPCC, The University of Edinburgh 23

Node 1

OST 1

Job runs on a compute node.
The data is saved on a different device,
The Object Storage Target (OST)

Lustre

EPCC, The University of Edinburgh 24

Node 1

OST 1 OST 2 OST 3

Each file is created on
a different OST

data1.out

data2.out

data3.out

da
ta

13
.o

ut

~ 1 GB/s per process

~ 10 GB/s per node

~ 3 GB/s per OST

OST 12

data12.out

Shared file

EPCC, The University of Edinburgh
25

• By default, the whole file is on a single OST

OST 12

Node 1

Rank 0 Rank 1

Rank 2
Rank 3

1

2

3

4F.dat (0,0) (1,0) (0,1) (1,1) (0,2) (1,2) (0,3) (1,3) (2,0) (3,0) (2,1) (3,1) (2,2) (3,2) (2,3) (3,3)

OST 1

Striping

EPCC, The University of Edinburgh
26

• File is divided in chunks called stripes.
• Stripes are assigned to OSTs in a round robin fashion

OST 12

Node 1

Rank 0 Rank 1

Rank 2

Rank 3

1

2

3

4F.dat (0,0) (1,0) (0,1) (1,1) (0,2) (1,2) (0,3) (1,3) (2,0) (3,0) (2,1) (3,1) (2,2) (3,2) (2,3) (3,3)

OST 1 OST 2 OST3 OST1 OST2 OST3

Striping

EPCC, The University of Edinburgh
27

• Number of Stripes: number of OSTs to wrap over (3 in the example)
• Stripe size: equal for all stripes, 1MiB by default

OST 12

Node 1

Rank 0 Rank 1

Rank 2

Rank 3

1

2

3

4F.dat (0,0) (1,0) (0,1) (1,1) (0,2) (1,2) (0,3) (1,3) (2,0) (3,0) (2,1) (3,1) (2,2) (3,2) (2,3) (3,3)

OST 1 OST 2 OST3 OST1 OST2 OST3

Striping

• Needs to be set at file or directory creation
• The number of stripes can be set on newly created directory

lfs setstripe -c ${NUMBER_OF_STRIPES} write_dir

• To set the number of stripes equal to the number of OSTS, set

${NUMBER_OF_STRIPES}=-1

EPCC, The University of Edinburgh 28

Darshan Tracing
• # DXT, file_id: 2595840042677522317, file_name: /mnt/lustre/a2fs-
work4/work/z19/z19/lparisi/io_data/posix/posix_shared/striped/data.
out

• # DXT, rank: 27, hostname: nid001893
• # DXT, write_count: 8, read_count: 0
• # DXT, mnt_pt: /mnt/lustre/a2fs-work4, fs_type: lustre
• # DXT, Lustre stripe_size: 1048576, Lustre stripe_count: 12
• # DXT, Lustre OST obdidx: 8 9 10 11 0 1 2 3 4 5 6 7
• # Module Rank Wt/Rd Segment Offset Length Start(s) End(s) [OST]
• X_POSIX 27 write 0 432000000000 2147479552 14.5021 25.9009 [11] [
0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

• X_POSIX 27 write 1 434147479552 2147479552 25.9009 38.4769 [7] [
8] [9] [10] [11] [0] [1] [2] [3] [4] [5] [6]

• X_POSIX 27 write 2 436294959104 2147479552 38.4808 52.6008 [3] [
4] [5] [6] [7] [8] [9] [10] [11] [0] [1] [2]

EPCC, The University of Edinburgh 29

Write Bandwidth

File Striping Performance

File Per Process unstriped 16 GB/s

Shared File POSIX unstriped 3 GB/s

Shared File POSIX striped 4 GB/s

EPCC, The University of Edinburgh 30

Using 4 nodes, 10 ranks per node

Cache coherence & Locking

• Cache coherence: once a POSIX call completes, any other call must see the
result of the previous operation

• Locking : To guarantee cache coherence, lustre locks sections of
the files.
Neighbouring processes have to wait for other
processes to finish

EPCC, The University of Edinburgh 31

2D Array

EPCC, The University of Edinburgh
32

OST 12

STRIPE 2

STRIPE 3

STRIPE 1

…

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (3,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

(0,0) (1,0) (2,0) (3,0) (0,1) (1,1) (2,1) (3,1) (0,2) (1,2) (2,2) (3,2) (0,3) (1,3) (2,3) (3,3)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

File:

Rank 0 Rank 1

Rank 2 Rank 3

Each rank needs to
write to many
different sections on
the file

2D array is
distributed across
several process

MPIIO

33

MPI-IO

• Write distributed data to a single shared file

• Handles writing to non contiguous sections of the file
• Supports independent and collective operations

EPCC, The University of Edinburgh 34

Write Bandwidth

File Striping Performance

File Per Process unstriped 16 GB/s

Shared File POSIX unstriped 3 GB/s

Shared File POSIX striped 4 GB/s

Shared File MPIIO - independent striped 0.04GB/s

EPCC, The University of Edinburgh 35

Using 4 nodes, 10 ranks per node

MPIIO - Independent

EPCC, The University of Edinburgh 36

• Only write calls in MPIIO
• MPIIO issues POSIX calls in

the background
• Both read and write POSIX

calls are issued
• Due to an optimization called
data sieving

Write Bandwidth

File Striping Performance

File Per Process unstriped 16 GB/s

Shared File POSIX unstriped 3 GB/s

Shared File POSIX striped 4 GB/s

Shared File MPIIO - independent striped 0.04GB/s

Shared File MPIIO - collective striped 2 GB/s

EPCC, The University of Edinburgh 37

Using 4 nodes, 10 ranks per node

MPIIO - Collective

EPCC, The University of Edinburgh 38

• No data sieving

• Only 3 processes per
node (aggregators) are
executing POSIX writes

MPIIO - Collective

EPCC, The University of Edinburgh 39

• Many small successive
writes, interleaved with
larger areas with no I/O
• As data is spread on all

ranks, but only a few
are writing to disk
there must be
communication

MPIIO - Collective

EPCC, The University of Edinburgh 40

• About 30% of time is
spent writing to disk
• The remaining 70% is

spent in the MPI library
• Likely large overhead

from communication

Module Rank Wt/Rd Segment Offset Length Start(s) End(s) [OST]
• X_POSIX 256 write 0 2097152 1048576 22.5972 22.5995 [9]
• X_POSIX 256 write 1 14680064 1048576 22.6008 22.6019 [9]
• X_POSIX 256 write 2 27262976 1048576 22.6162 22.6172 [9]

EPCC, The University of Edinburgh 41

Module Rank Wt/Rd Segment Offset Length Start(s) End(s) [OST]
X_POSIX 0 write 0 0 1048576 22.5985 22.6008 [7]
X_POSIX 0 write 1 12582912 1048576 22.6177 22.6189 [7]
X_POSIX 0 write 2 25165824 1048576 22.6204 22.6216 [7]
X_POSIX 0 write 3 37748736 1048576 22.6229 22.6241 [7]
X_POSIX 0 write 4 50331648 1048576 22.6258 22.6269 [7]

By default, one aggregator per stripe . The number of aggregators can
be changed using environment variables
For 12 stripes , that means 3 aggregators per node

Each aggregator
writes to a different
OST

Each call writes 1MiB of data
= stripe size

MPIIO –Two phase

EPCC, The University of Edinburgh 42

(0,0) (1,0) (2,0) (3,0) (0,1) (1,1) (2,1) (3,1) (0,2) (1,2) (2,2) (3,2) (0,3) (1,3) (2,3) (3,3)

(0,0) (0,1)

(1,0) (1,1)

(0,2) (0,3)

(1,2) (1,3)

(2,0) (2,1)

(3,0) (3,1)

(3,2) (2,3)

(3,2) (3,3)

OST 1 OST 2

Collective communication

Rank 0 Rank 1Rank 3Rank 2

Rank 0 Rank 3

Nektar++

43

Nektar++

EPCC, The University of Edinburgh 44

• Unstructured mesh
• Time evolution of a diffusion equation
• Very short simulation on 8 nodes (128 tasks per core) , unstriped

Nektar++

EPCC, The University of Edinburgh 45

• Lots of small reads
• Fewer big and medium write accesses

Nektar++

EPCC, The University of Edinburgh 46

MPIIO POSIX

• Top 10 time consuming files
• Dominated by write operations, but significant contribution

from read operations

Nektar++

EPCC, The University of Edinburgh 47

Module Rank Wt/Rd Segment Offset Length Start(s) End(s)
X_MPIIO 0 write 0 73008 18088 451.1505 452.4895
X_MPIIO 0 write 1 18455856 361760 452.5259 453.0412
X_MPIIO 0 write 2 0 96 453.0505 453.0568
X_MPIIO 0 read 0 0 8 450.9990 450.9999
X_MPIIO 0 read 1 0 9 450.9999 450.9999
X_MPIIO 0 read 2 9 87 450.9999 450.9999
X_MPIIO 0 read 3 96 512 450.9999 450.9999

MPI-IO 0 11539591632334063225 MPIIO_INDEP_READS 14 simple_3D_mesh_7.chk
MPI-IO 0 11539591632334063225 MPIIO_INDEP_WRITES 1 simple_3D_mesh_7.chk
MPI-IO 0 11539591632334063225 MPIIO_COLL_READS 0 simple_3D_mesh_7.chk
MPI-IO 0 11539591632334063225 MPIIO_COLL_WRITES 2 simple_3D_mesh_7.chk

Two big collective writes

One small independent write

Several small and very quick reads

Nektar++ : SCALASCA

EPCC, The University of Edinburgh 48

• Can use a regular
profiler for function
calls, such as Scalasca
• Small reads are issued

by HDF5 metadata
operations
• SCALASCA reports size

of data written/read by
subroutines

HDF5

MPIIO

EPCC, The University of Edinburgh 49

• Can use Darshan to profile multiple layers of the IO
software stack (filesystem, MPIIO, POSIX, etc..)
• Can combine with general profilers such as SCALASCA
• Guides setting up your environment (MPIIO hints such as

the number of aggregators, striping etc..) regardless of
which high level library you use
• Guides development of applications

Summary

Reusing this material

EPCC, The University of Edinburgh 50

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.
https://creativecommons.org/licenses/by-nc-sa/4.0/

This means you are free to copy and redistribute the material and adapt and build on the material under the
following terms: You must give appropriate credit, provide a link to the license and indicate if changes were made. If

you adapt or build on the material you must distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission before reusing these
images.

https://creativecommons.org/licenses/by-nc-sa/4.0/

