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• Introduction to the IO software stack 
• The Darshan profiler
• Write a 2D array to disk: file per process, single shared file, 

mpiio
• Netkar++ example  

Outline



The software stack
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Filesystem ( Lustre )

POSIX STDIO

MPIIO

HDF5

Your application

libc libraries, 
single 
process calls

Use mpi to aggregate data from 
multiple process on a single file

Save both data and metadata 
information on files

Calls the high livel library

Network file 
system



The darshan tool
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Filesystem ( Lustre )

POSIX STDIO

MPIIO

HDF5

Your application
Darshan profiles multiple 
layers of the software stack
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2D Array
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File per process
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File per process
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• Each process writes 
their own data to a 
different file
• Efficient
• Data management is 

difficult 
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Rank 1
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Write Bandwidth

File Performance

File Per Process 16 GB/s
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Using 4 nodes, 10 ranks per node



Using Darshan
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Using Darshan

• Load Darshan

module load darshan

• Run you executable as usual 
srun app.exe

Any application launched trough srun will be linked to Darshan and 
profiled. 
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Finding the darshan profile
Darshan saves all files in a common directory specified during installation.

$ darshan-config --log-path
/work/z19/z19/lparisi/courses/io/io_webinar/sw/darshan/darsha
n-logs

The log directory contains subfolders named as year/month/day .  

Ex: For a job run on the 23th of January, 

the .darshan profile can be found in 

${LOG_DIR}/2024/1/23 
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Generating a PDF report

• Generate a summary pdf report

darshan-job-summary.pl fp40.darshan

• Generate a summary pdf report. If your application writes to a lot file, 
you might want to proceed with caution.

darshan-summary-per-file.sh fp40.darshan
reports_per_file_dir
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Darshan Report
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What is the 
overall 
bandwidth ?

What job did 
we run ?

How many IO 
operations ?

What is the 
fraction of 
runtime doing 
IO ?



Darshan Report
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• 4 nodes x 10 ranks per 
node = 40 processors
• 8 writes per processor
• Each write is about 

2GiB write ,  except one
• Data written is about 

15GiB per file



Darshan Report
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Roughly the 
same time 
spent writing 
per process

Shows a timeline of all POSIX and STDIO output



Darshan Summary

• Generate the textual summary report

darshan-parser posix_file_per_process.darshan >
summary_posix_file_per_process.txt

• To collect statistics per rank, without aggregating aver all process , disable 
shared reduction before launching the job

export DARSHAN_DISABLE_SHARED_REDUCTION=1
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Darshan Summary
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#<module> <rank> <record id> <counter> <value> <file name> <mount pt> <fs type>

POSIX 0 10315675029492807030 POSIX_OPENS 1 /mnt/lustre/a2fs-
work4/work/z19/z19/lparisi/io_data/posix/data0.out /mnt/lustre/a2fs-work4 lustre

POSIX 0 10315675029492807030 POSIX_FILENOS 0 /mnt/lustre/a2fs-
work4/work/z19/z19/lparisi/io_data/posix/data0.out /mnt/lustre/a2fs-work4 lustre

POSIX 0 10315675029492807030 POSIX_DUPS 0 /mnt/lustre/a2fs-
work4/work/z19/z19/lparisi/io_data/posix/data0.out /mnt/lustre/a2fs-work4 lustre

POSIX 0 10315675029492807030 POSIX_READS 0 /mnt/lustre/a2fs-
work4/work/z19/z19/lparisi/io_data/posix/data0.out /mnt/lustre/a2fs-work4 lustre

POSIX 0 10315675029492807030 POSIX_WRITES 8 /mnt/lustre/a2fs-
work4/work/z19/z19/lparisi/io_data/posix/data0.out /mnt/lustre/a2fs-work4 lustre



Darshan Tracing

• Enable Tracing before launching the job
export DXT_ENABLE_IO_TRACE=1

• Generate the trace textual report

darshan-dxt-parser posix_file_per_process.darshan >
trace_posix_file_per_process.txt
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Darshan Tracing – File Per Process

• # DXT, file_id: 1514362557366186124, file_name: /mnt/lustre/a2fs-
work4/work/z19/z19/lparisi/io_data/posix/data2.out

• # DXT, rank: 2, hostname: nid001848
• # DXT, write_count: 8, read_count: 0
• # DXT, mnt_pt: /mnt/lustre/a2fs-work4, fs_type: lustre
• # DXT, Lustre stripe_size: 1048576, Lustre stripe_count: 1
• # DXT, Lustre OST obdidx: 5
• # Module Rank Wt/Rd Segment Offset Length Start(s) End(s) [OST]
• X_POSIX 2 write 0 0 2147479552 13.7719 18.6430 [ 5]
• X_POSIX 2 write 1 2147479552 2147479552 18.6430 23.4592 [ 5]
• X_POSIX 2 write 2 4294959104 2147479552 23.4679 28.6368 [ 5]
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Single shared file

20



Shared file
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• Write in parallel to a single shared file
• Each process write its own data to a separate section of the file
• Works for POSIX on LUSTRE, but not STDIO

OST 12

Node 1

Rank 0 Rank 1

Rank 2
Rank 3

1

2

3

4F.dat (0,0) (1,0) (0,1) (1,1) (0,2) (1,2) (0,3) (1,3) (2,0) (3,0) (2,1) (3,1) (2,2) (3,2) (2,3) (3,3)



Write Bandwidth

File Striping Performance

File Per Process 16 GB/s

Shared File POSIX 3 GB/s
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Using 4 nodes, 10 ranks per node



Lustre
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Node 1

OST 1

Job runs on a compute node.
The data is saved on a different device, 
The Object Storage Target ( OST )



Lustre
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Node 1

OST 1 OST 2 OST 3

Each file is created on
a different OST

data1.out

data2.out

data3.out

da
ta

13
.o

ut

~ 1 GB/s per process

~ 10 GB/s per node

~ 3 GB/s per OST

OST 12

data12.out



Shared file
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• By default, the whole file is on a single OST

OST 12

Node 1

Rank 0 Rank 1

Rank 2
Rank 3

1

2

3

4F.dat (0,0) (1,0) (0,1) (1,1) (0,2) (1,2) (0,3) (1,3) (2,0) (3,0) (2,1) (3,1) (2,2) (3,2) (2,3) (3,3)

OST 1



Striping
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• File is divided in chunks called stripes. 
• Stripes are assigned to OSTs in a round robin fashion 

OST 12

Node 1

Rank 0 Rank 1

Rank 2

Rank 3

1

2

3

4F.dat (0,0) (1,0) (0,1) (1,1) (0,2) (1,2) (0,3) (1,3) (2,0) (3,0) (2,1) (3,1) (2,2) (3,2) (2,3) (3,3)

OST 1 OST 2 OST3 OST1 OST2 OST3



Striping
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• Number of Stripes: number of OSTs to wrap over ( 3 in the example )
• Stripe size: equal for all stripes, 1MiB by default

OST 12

Node 1

Rank 0 Rank 1

Rank 2

Rank 3

1

2

3

4F.dat (0,0) (1,0) (0,1) (1,1) (0,2) (1,2) (0,3) (1,3) (2,0) (3,0) (2,1) (3,1) (2,2) (3,2) (2,3) (3,3)

OST 1 OST 2 OST3 OST1 OST2 OST3



Striping

• Needs to be set at file or directory creation
• The number of stripes can be set on newly created directory

lfs setstripe -c ${NUMBER_OF_STRIPES} write_dir

• To set the number of stripes equal to the number of OSTS, set

${NUMBER_OF_STRIPES}=-1
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Darshan Tracing
• # DXT, file_id: 2595840042677522317, file_name: /mnt/lustre/a2fs-
work4/work/z19/z19/lparisi/io_data/posix/posix_shared/striped/data.
out

• # DXT, rank: 27, hostname: nid001893
• # DXT, write_count: 8, read_count: 0
• # DXT, mnt_pt: /mnt/lustre/a2fs-work4, fs_type: lustre
• # DXT, Lustre stripe_size: 1048576, Lustre stripe_count: 12
• # DXT, Lustre OST obdidx: 8 9 10 11 0 1 2 3 4 5 6 7
• # Module Rank Wt/Rd Segment Offset Length Start(s) End(s) [OST]
• X_POSIX 27 write 0 432000000000 2147479552 14.5021 25.9009 [ 11] [ 
0] [ 1] [ 2] [ 3] [ 4] [ 5] [ 6] [ 7] [ 8] [ 9] [ 10]

• X_POSIX 27 write 1 434147479552 2147479552 25.9009 38.4769 [ 7] [ 
8] [ 9] [ 10] [ 11] [ 0] [ 1] [ 2] [ 3] [ 4] [ 5] [ 6]

• X_POSIX 27 write 2 436294959104 2147479552 38.4808 52.6008 [ 3] [ 
4] [ 5] [ 6] [ 7] [ 8] [ 9] [ 10] [ 11] [ 0] [ 1] [ 2]
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Write Bandwidth

File Striping Performance

File Per Process unstriped 16 GB/s

Shared File POSIX unstriped 3 GB/s

Shared File POSIX striped 4 GB/s
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Using 4 nodes, 10 ranks per node



Cache coherence & Locking

• Cache coherence: once a POSIX call completes, any other call must see the 
result of the previous operation

• Locking : To guarantee cache coherence, lustre locks sections of 
the files. 
Neighbouring processes have to wait for other 
processes to finish
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2D Array
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OST 12

STRIPE 2

STRIPE 3

STRIPE 1

… 

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (3,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

(0,0) (1,0) (2,0) (3,0) (0,1) (1,1) (2,1) (3,1) (0,2) (1,2) (2,2) (3,2) (0,3) (1,3) (2,3) (3,3)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

File: 

Rank 0 Rank 1

Rank 2 Rank 3

Each rank needs to 
write to many 
different sections on 
the file

2D array is 
distributed across 
several process



MPIIO
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MPI-IO

• Write distributed data to a single shared file

• Handles writing to non contiguous sections of the file
• Supports independent and collective operations
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Write Bandwidth

File Striping Performance

File Per Process unstriped 16 GB/s

Shared File POSIX unstriped 3 GB/s

Shared File POSIX striped 4 GB/s

Shared File MPIIO - independent striped 0.04GB/s
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Using 4 nodes, 10 ranks per node



MPIIO - Independent

EPCC, The University of Edinburgh 36

• Only write calls in MPIIO
• MPIIO issues POSIX calls in

the background
• Both read and write POSIX 

calls are issued
• Due to an optimization called
data sieving



Write Bandwidth

File Striping Performance

File Per Process unstriped 16 GB/s

Shared File POSIX unstriped 3 GB/s

Shared File POSIX striped 4 GB/s

Shared File MPIIO - independent striped 0.04GB/s

Shared File MPIIO - collective striped 2 GB/s
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Using 4 nodes, 10 ranks per node



MPIIO - Collective
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• No data sieving

• Only 3 processes per 
node ( aggregators ) are
executing POSIX writes 



MPIIO - Collective
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• Many small successive 
writes, interleaved with 
larger areas with no I/O
• As data is spread on all

ranks, but only a few 
are writing to disk 
there must be 
communication



MPIIO - Collective
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• About 30% of time is 
spent writing to disk 
• The remaining 70% is

spent in the MPI library
• Likely large overhead 

from communication



# Module Rank Wt/Rd Segment Offset Length Start(s) End(s) [OST]
• X_POSIX 256 write 0 2097152 1048576 22.5972 22.5995 [ 9]
• X_POSIX 256 write 1 14680064 1048576 22.6008 22.6019 [ 9]
• X_POSIX 256 write 2 27262976 1048576 22.6162 22.6172 [ 9]

EPCC, The University of Edinburgh 41

# Module Rank Wt/Rd Segment Offset Length Start(s) End(s) [OST]
X_POSIX 0 write 0 0 1048576 22.5985 22.6008 [ 7]
X_POSIX 0 write 1 12582912 1048576 22.6177 22.6189 [ 7]
X_POSIX 0 write 2 25165824 1048576 22.6204 22.6216 [ 7]
X_POSIX 0 write 3 37748736 1048576 22.6229 22.6241 [ 7]
X_POSIX 0 write 4 50331648 1048576 22.6258 22.6269 [ 7]

By default, one aggregator per stripe . The number of aggregators can 
be changed using environment variables
For 12 stripes , that means 3 aggregators per node

Each aggregator
writes to a different 
OST 

Each call writes 1MiB of data 
= stripe size



MPIIO –Two phase

EPCC, The University of Edinburgh 42
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Nektar++
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Nektar++
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• Unstructured mesh
• Time evolution of a diffusion equation
• Very short simulation on 8 nodes (128 tasks per core) , unstriped



Nektar++
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• Lots of small reads
• Fewer big and medium write accesses



Nektar++
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MPIIO POSIX

•  Top 10 time consuming files
• Dominated by write operations, but significant contribution 

from read operations



Nektar++
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# Module Rank Wt/Rd Segment Offset Length Start(s) End(s)
X_MPIIO 0 write 0 73008 18088 451.1505 452.4895
X_MPIIO 0 write 1 18455856 361760 452.5259 453.0412
X_MPIIO 0 write 2 0 96 453.0505 453.0568
X_MPIIO 0 read 0 0 8 450.9990 450.9999
X_MPIIO 0 read 1 0 9 450.9999 450.9999
X_MPIIO 0 read 2 9 87 450.9999 450.9999
X_MPIIO 0 read 3 96 512 450.9999 450.9999

MPI-IO 0 11539591632334063225 MPIIO_INDEP_READS 14 simple_3D_mesh_7.chk
MPI-IO 0 11539591632334063225 MPIIO_INDEP_WRITES 1 simple_3D_mesh_7.chk 
MPI-IO 0 11539591632334063225 MPIIO_COLL_READS 0 simple_3D_mesh_7.chk
MPI-IO 0 11539591632334063225 MPIIO_COLL_WRITES 2 simple_3D_mesh_7.chk

Two big collective writes

One small independent write

Several small and very quick reads



Nektar++ : SCALASCA
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• Can use a regular 
profiler for function 
calls, such as Scalasca 
• Small reads are issued 

by HDF5 metadata 
operations
• SCALASCA reports size 

of data written/read by 
subroutines 

HDF5

MPIIO
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• Can use Darshan to profile multiple layers of the IO 
software stack ( filesystem, MPIIO, POSIX, etc.. )
• Can combine with general profilers such as SCALASCA
• Guides setting up your environment ( MPIIO hints such as 

the number of aggregators, striping etc.. ) regardless of 
which high level library you use 
• Guides development of applications

Summary



Reusing this material
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