
Slurm Job Submission
ARCHER2 Virtual Tutorial, Wed 26th July 2023

David Henty d.henty@epcc.ed.ac.uk

ARCHER2 CSE Support Team

mailto:d.henty@epcc.ed.ac.uk


Reusing this material

EPCC, The University of Edinburgh 2

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/ 

This means you are free to copy and redistribute the material and adapt and build on the material under the 
following terms: You must give appropriate credit, provide a link to the license and indicate if changes were made. If 

you adapt or build on the material you must distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission before reusing these 
images.

https://creativecommons.org/licenses/by-nc-sa/4.0/


Partners

EPCC, The University of Edinburgh 3



A day in the life of a Slurm job

Batch script written
with a text editor

Submitted to the 
Slurm batch system 

using sbatch

Held in a queue 
until able to run

Executed

Parallel jobs launched 
from script

Completed and job 
output written



Conception: batch script written …

• What is a batch script?
• a list of commands that are executed in order exactly as if you typed them 

into the shell on the command line

• recommended to use bash

• Lines starting “#” are comments

• Except …
• #! is special to operating system

• #!/bin/bash  # Execute script via the bash shell

• and
• #SBATCH is special to batch system

• #SBATCH --job-name=Example_MPI_Job # Pass on as arguments to sbatch



Why?

• Some parameters of your job are significant at submit time
• to enable Slurm to schedule your job appropriately

• e.g. number of nodes, wallclock time, ...

• Other aspects of your job are significant at execution time
• setting environment variables

• job preparation: copying files, pre-processing scripts, ..

• Handy to have all of these in the same file
• rather than pass huge number of arguments to sbatch (--nodes=, -- time=,...)

• hide these in the script as comments

• you have a complete copy of all the parameters for your job



https://docs.archer2.ac.uk/user-guide/scheduler



Great! So I can run the batch 
script in advance on the login 
nodes to check it works since 
it’s just a bunch of commands

I’m afraid it’s not that 
simple

Why? Your batch script runs on a 
different computer in a 
different environment

So some commands that 
work on the login nodes 

won’t work under Slurm? Yes, and some commands that 
don’t work on the login nodes 

only work under Slurm





Birth: submitted to batch system

user@archer2$ sbatch myscript.job

  Submitted batch job 4015920.sdb

• Slurm takes a copy of your batch script and stores it somewhere
• ascertains resource requirements (e.g. no. of nodes)

• from command line arguments or from #SBATCH lines

• returns a unique job number

• Job is queued until resources are available
• query status with squeue –u <myusername>

• easier to use squeue –-me

• job status set to pending: “PD”



Reproducibility

• Useful to have a copy of your Slurm script in the job output
• since we often edit the same script over and over ...
• useful trick

echo "+------------------------------------------------------+"

echo "| Start of contents of SLURM job script for job $SLURM_JOB_ID |"

echo "+------------------------------------------------------+"

cat $0

echo "+------------------------------------------------------+"

echo "|  End of contents of SLURM job script for job $SLURM_JOB_ID  |"

echo "+------------------------------------------------------+"

• Submission parameters can be accessed as environment variables
• $0 is the path to Slurm’s unique copy of your batch script



Resource selection

• Unlike some systems, most jobs on ARCHER2 go to a single queue
• #SBATCH --partition=standard

• #SBATCH --qos=standard

• some special queues, e.g. for short and long jobs, higher memory, ...
• a check is done at submission time to ensure you have a reasonable budget

• Jobs scheduled entirely based on requested resources
• i.e. run time and number of (128-core) nodes
• parallel compute nodes are always allocated in exclusive mode

• Can specify high memory
• #SBATCH --qos=highmem

• also have short, long, serial, reservation, ...



Great! So I can edit the same 
job script and resubmit 

straight away?

I’m afraid it’s not 
always that simple

Why?

If your’re running a self-compiled executable 
from the script then it will see the version 

that’s there at run time - OK for a package but 
not if you’re frequently recompiling

How does it decide 
when to run my job?

A balance of your requested number 
of nodes and the runtime compared 

to all the other jobs in the system

So I should take care when 
specifying these?

Yes – don’t ask for huge 
amounts of runtime if you 

don’t need it!



Childhood: job script runs

• A set of compute nodes is reserved for your job
• squeue job status set to “R”
• your bash script is executed on one of the allocated compute nodes

• the Slurm management node
• ... the lowest-numbered one?

• The only way to access your other compute nodes is via srun

 #SBATCH --job-name=Example_MPI_Job

 ...

 # Now run the parallel job

 srun mympiprogram

• number of MPI processes etc. computed from submission parameters
• can be over-ridden (with care!)



login nodes

compute nodes

Operating 
Systems



login nodes

compute nodes

Job flow



Adulthood: parallel jobs

• Compute nodes reserved for duration of job
• Slurm doesn’t care if/how you use them!
• all commands from batch script executed on management node
• srun on management node causes parallel jobs to run all compute nodes

• Do production runs in /work/ filesystem, not /home/.
• your script automatically starts executing from where it was submitted

• srun does the following
• launches the executable  from all the compute nodes (reads from filesystem)

• can use sbcast to explicitly copy to /tmp on each node

• gathers the standard outputs / errors from all the PEs and sends to log file



/home/

/work/

login nodes

compute nodes

File 
Systems



Death: the end of your job

• Job finishes
• after the all the commands in script have been executed …

• … or the wallclock limit is exceeded

• All running parallel jobs are killed
• e.g. wallclock exceeded or srun running in background (see later)

• outputs collated and flushed to file
• e.g. written to myjob-1234567.out

• sbatch job status set to “CG” for a little while
• job is “Completing” (not “Completed”) but script has finished

• then disappears

Retirement: the end of your job



Charging

• You are charged for the number of nodes you requested
• regardless of whether you actually used them

• minimum allocation is a node; reserved exclusively for single user

• You are charged for the amount of time your job ran
• regardless of how much time you requested

• ideally request slightly more time that the actual runtime

• A job that is killed due to running for too long is still charged
• unless it hung due to system error

• users can request a refund



How does srun place processes and threads? (i)

• key parameters are:
• --nodes

• --tasks-per-node

• --ntasks

• --cpus-per-task

• some redundancy here
• e.g. nodes=4 & tasks-per-node=128 is same as ntasks=512 & tasks-per-node=128

• Slurm complains if they’re not the same (and has some rules for precedence)

• at submit time, Slurm just needs to work out how many nodes you need
• at runtime it’s a bit more complicated



How does srun place processes and threads? (ii)

• we recommend:

srun --hint=nomultithread --distribution=block:block mympiprogram

• #SBATCH job parameters are all passed automatically to srun
• except you must set: export SRUN_CPUS_PER_TASK=$SLURM_CPUS_PER_TASK

• only really has an effect if you have --cpus-per-task larger than 1

• this places MPI processes sequentially across each node
• fills up first node entirely before moving on to second

• each process is given cpus-per-task CPU cores
• e.g. cpus-per-task = 2 gives 64 MPI processes on even-numbered cores of each node

• --hint=nomultithread means ignore hyperthreading / hypercores / SMT
• just use physical cores 0-127 and not hypercores 128-255



Why not run MPI processes on all the cores?

• Two main use cases:
• you need more than 2GiB per core

• you are using OpenMP threading in addition to MPI

• For hybrid MPI/OpenMP
• set OMP_NUM_THREADS equal to cpus-per-task

• e.g. export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

• export OMP_PLACES=cores to ensure correct binding of threads

• Can all get a bit complicated
• if in doubt run the “xthi” program (module load xthi)

• prints out nodes and the binding of each process / thread within each node
• either as a number (“8”), a list (“3,131”) or a range (“0-7”).



srun

• Can issue multiple srun’s in a single job
• single job + many srun’s may be better than many small batch jobs

• benchmarking

• simple taskfarms with multiple concurrent sruns

• Approach
• specify minimal resource requirements at submit time

• e.g. #SBATCH --nodes=4

• specify all other parameters as arguments to srun, e.g.

 srun --nodes=2 –ntasks=256 --tasks-per-node=128 --cpus-per-task=1 \

         --distribution=block:block --hint=nomultithread mympiprogram



benchmarking

• Single batch job requesting maximum number of nodes

• Many sequential sruns executing on subset of nodes
• e.g. scaling run on 128, 256, 512, 1024, ... processes

• Advantages
• much less queueing

• all jobs run on the same nodes so performance more reproducible

• Disadvantages
• you pay for unused resources



Taskfarm

• OK, how about:

 srun ... mympiprogram dataset1

 srun ... mympiprogram dataset2

 srun ... mympiprogram dataset3

 srun ... mympiprogram dataset4

# Incorrect! – all these run sequentially



Need to run them in the backround

srun ... mympiprogram dataset1

 srun ... mympiprogram dataset2

 srun ... mympiprogram dataset3

 srun ... mympiprogram dataset4

# Incorrect: “Job finishes after the all the 

# commands in script have been executed”.

# Final srun returns immediately, script

# reaches end and finishes, srun’s all killed.

&

&

&

&



Multiple aprun’s in the background (ii)

srun ... mympiprogram dataset1 &

 srun ... mympiprogram dataset2 &

 srun ... mympiprogram dataset3 &

 srun ... mympiprogram dataset4

# Incorrect: script finishes when dataset4

# finishes, but other dataset may still be

# running at that time so will be killed!



Run them in the backround and wait...

srun ... mympiprogram dataset1 &

 srun ... mympiprogram dataset2 &

 srun ... mympiprogram dataset3 &

 srun ... mympiprogram dataset4 &

 wait

# Correct! “wait” blocks until all spawned

# processes are complete

# Here, srun acts like a mini-scheduler



This only works for full nodes

• If you wanted 8 jobs each using 64 processes each:

 srun ... mympiprogram dataset1 &  # run with 64 tasks

 ...

 srun ... mympiprogram dataset8 &  # run with 64 tasks

• srun assigns entire node resources (including memory) to each program
• 5th srun will block until one of first 4th finishes even though CPU-cores are available

• Solution: specify memory requirements (2 GiB/process with headroom)

 srun --nodes=1 --ntasks=64 --tasks-per-node=64 --cpus-per-task=1 \

      --distribution=block:block --hint=nomultithread \

      --exact --mem=1500M mympiprogram dataset1 &



Tips and tricks (i)

• Useful to have print statements appear in log files ASAP

  srun --unbuffered ...    

• Interactive jobs
• allow you to do realtime experiments with many sruns but a single sbatch

• or debug your batch script to check that all commands are correct

• Essentially submit a job that just runs a terminal
user@ln01:work$ srun --nodes=2 --exclusive --time=00:20:00 \

--partition=standard --qos=short --account=[budget] \

--pty /bin/bash

user@nid001261:work$

• to fully debug scripts may require a clean environment: --export=none

• Subsequent srun commands require: --oversubscribe



Tips and tricks (ii)

• May want to run a bash system command on every compute node
• e.g. monitor memory usage, CPU load, ..

• Approach
• put it in an executable shell script

#!/bin/bash

echo –n “running on node: $(hostname)”

top –b –n 1 # Monitor running processes

• Run one copy per node
srun --tasks-per-node=1 --ntasks=$SLURM_NNODES --nodes=$SLURM_NNODES ./top.sh



Questions?

☺


	Slide 1: Slurm Job Submission
	Slide 2: Reusing this material
	Slide 3: Partners
	Slide 4: A day in the life of a Slurm job
	Slide 5: Conception: batch script written …
	Slide 6: Why?
	Slide 7: https://docs.archer2.ac.uk/user-guide/scheduler
	Slide 8
	Slide 9: Birth: submitted to batch system
	Slide 10: Reproducibility
	Slide 11: Resource selection
	Slide 12
	Slide 13: Childhood: job script runs
	Slide 14: Operating Systems
	Slide 15: Job flow
	Slide 16: Adulthood: parallel jobs
	Slide 17: File Systems
	Slide 18: Death: the end of your job
	Slide 19: Charging
	Slide 20: How does srun place processes and threads? (i)
	Slide 21: How does srun place processes and threads? (ii)
	Slide 22: Why not run MPI processes on all the cores?
	Slide 23: srun
	Slide 24: benchmarking
	Slide 25: Taskfarm
	Slide 26: Need to run them in the backround
	Slide 27: Multiple aprun’s in the background (ii)
	Slide 28: Run them in the backround and wait...
	Slide 29: This only works for full nodes
	Slide 30: Tips and tricks (i)
	Slide 31: Tips and tricks (ii)
	Slide 32

