
Coupling LAMMPS and OpenFOAM

for Multi-Scale Models

E. R. Smith2, G. J. Pringle3, G. Gennari4, M. Magnini1,*

1Dept. of Mechanical Engineering, University of Nottingham, Nottingham. E-mail: mirco.magnini@nottingham.ac.uk
2Mechanical and Aerospace Engineering, Brunel University London: edward.smith@brunel.ac.uk
3EPCC, University of Edinburgh: g.pringle@epcc.ed.ac.uk
4Dept. of Mechanical Engineering, University of Nottingham, Nottingham: gabriele.gennari@nottingham.ac.uk

eCSE06-01: “Hybrid Atomistic-Continuum Simulations
of Boiling Across Scales”

mailto:edward.smith@brunel.ac.uk
mailto:g.pringle@epcc.ed.ac.uk

CPL Library

eCSE06-01: “Hybrid Atomistic-Continuum Simulations
of Boiling Across Scales”

4

• Finite Volume Solver

Domain Decomposition Coupling

• Discrete molecules

Share the same
time and length

scales

O’Connell Thompson (1995), Hadjiconstantinou (1998), Flekkoy (2000), Nie et al (2004).

5

• Finite Volume Solver

Coupled CFD-MD Simulation

• Discrete molecules

CFD→MD

Boundary

condition

MD→CFD

Boundary

condition

Buffer

Coupling Overview

www.cpl-library.org

libcpl.so

CPL_init(COMM, realm)

CPL_setup(cells, domain, topology)

 CPL_recv(U, P) CPL_send(U, P)

 CPL_send(F, e) CPL_recv(F, e)

6

4 CFD Processors

48 DEM
Processors

➢A special case of domain decomposition where they totally overlap

Granular Mechanics

• Apply drag force based on

continuum values to

particles

• Average values on a grid

• A Porous form of the Navier-

Stokes Equations

Assumes

Cell >> particle

Porosity

9

MPI – the Inspiration for CPL Library

➢ Message Passing Interface (MPI) is a standardisation of communication for HPC

➢ The commands MPI_send and MPI_recv are used to exchange information between processes

➢ The processor topology can be setup using MPI_Cart_create

➢ Assuming you have 128 cores available you might want 8 x 4 x 4 which is,

➢ Allows scheduler/compiler to reorder to optimise topology based on node/core proximity in

supercomputer (reorder flag)

➢ Adjacent processes can be obtained with commands like CART_SHIFT

call MPI_Cart_create(COMM, ndims, [8, 4, 4], periods[],

reorder, Ouput_cart_comm);

11

MPI

➢ Communicators are used to determine which processes communicate, e.g.

MPI_send(data, size, MPI_COMM)

➢ The default that contains all communicators is MPI_COMM_WORLD

➢ Most codes (inc. LAMMPS/OpenFOAM) use this as they this as they assume they are the only

code in the world

12

CPL library employs a newer MPI feature to solve this

➢ Shared (same MPI_COMM_WORLD)

mpiexec –n 1 ./md : -n ./cfd

• Both codes must be patched to replace
MPI_COMM_WORLD with CPL_COMM

➢ Distinct (Own MPI_COMM_WORLDs)

• Codes couple using MPI_port, no need to
patch them as share COMM_UNIVERSE

• ARCHER2 now works with MPI_port (since recent rebuild!)

mpiexec –n 1 ./md

mpiexec –n 1 ./cfd

13

CPL Library - Linking Cartesian Grids Between 2 Codes

Squares are
processors

(CFD computational
grid not shown) MD Code CFD Code

15

Weak Scaling of CPL-Library on ARCHER

➢Scaling improved by
➢Using MPI CART CREATE

➢Ensuring all coupled
communication is
processor to processor

➢Test here up to 10,000
cores

➢Scaling example
➢Two dummy codes which

do minimal work

➢Communication is a large
fraction

Building CPL library

• Building creates a library libcpl.so in lib folder of cpl-library

make PLATFORM=gcc

OR make PLATFORM=ARCHER2

• CPL library itself is very minimal

− A core fortran sorce code with two main files

− Bindings for C++ and Python

− A set of utilities to help coupled simulations

• Prerequisite include a fortran compiler, a C++ compiler, Python and MPI

• Python libraries like numpy, scipy, matplotlib and pytest are useful to run tests

and wxpython allows some user interfaces

• Has been built in a module on ARCHER2, please see:

17

• CPL library itself is very minimal

− A core fortran sorce code with two main files

− Bindings for C++ and Python

− A set of utilities to help coupled simulations

https://www.cpl-library.org/docs/Running_on_ARCHER2.pdf

https://www.cpl-library.org/docs/Running_on_ARCHER2.pdf

Building CPL library

• CPL library itself is very minimal

− A core fortran sorce code with two main files

− Bindings for C++ and Python

18

− A set of utilities to help coupled simulations

• Wider utilities include interchangeable Fortran, C++ and Numpy arrays,

objects to get field information (e.g. average MD) and apply MD forces

• Core exchange functionality tested using pytest for various topologies

Building CPL library

• Division of concern – CPL library can be tested by itself, codes kept isolated

• CFD code tested by coupling to a minimal script (software concept of mocking)

• MD code tested separately by coupling to a minimal script (mock CFD)

19

Software Best Practice and Validation

•Testing includes

•Basic units test on low level code

•Coupled runs on all permutations of
coupled topologies

•Coupling codes to Mocks to ensure
expected behaviour

•Complete physical examples compared
to known analytical solutions

•Uses GitHub Actions to automate tests
after any changes in the code

20

Coupling Mocks – Python CFD Mock

22

from mpi4py import MPI

from cplpy import CPL

comm = MPI.COMM_WORLD

CPL = CPL()

CFD_COMM = CPL.init(CPL.CFD_REALM)

CPL.setup_cfd(CFD_COMM.Create_cart([1, 1, 1]), xyzL=[1.0, 1.0, 1.0],

 xyz_orig=[0.0, 0.0, 0.0], ncxyz=[32, 32, 32])

recv_array, send_array = CPL.get_arrays(recv_size=4, send_size=1)

for time in range(5):

 recv_array, ierr = CPL.recv(recv_array)

 send_array[0,:,:,:] = 2.*time

 CPL.send(send_array)

CPL.finalize()

MPI.Finalize()

minimal_CFD.py

Coupling Mocks – Python CFD Mock

23

from mpi4py import MPI

from cplpy import CPL

comm = MPI.COMM_WORLD

CPL = CPL()

CFD_COMM = CPL.init(CPL.CFD_REALM)

CPL.setup_cfd(CFD_COMM.Create_cart([1, 1, 1]), xyzL=[1.0, 1.0, 1.0],

 xyz_orig=[0.0, 0.0, 0.0], ncxyz=[32, 32, 32])

recv_array, send_array = CPL.get_arrays(recv_size=4, send_size=1)

for time in range(5):

 recv_array, ierr = CPL.recv(recv_array)

 send_array[0,:,:,:] = 2.*time

 CPL.send(send_array)

CPL.finalize()

MPI.Finalize()

minimal_CFD.py

CFD Processors here to create MPI
Cartesian Grid of processors

CFD Cells
Specified

here

• All mapping done by
CPL_setup

• Send and recv then exchange
data to the right place

Coupling Mocks – Python to C++

24

from mpi4py import MPI

from cplpy import CPL

comm = MPI.COMM_WORLD

CPL = CPL()

CFD_COMM = CPL.init(CPL.CFD_REALM)

CPL.setup_cfd(CFD_COMM.Create_cart([1, 1, 1]),

 xyzL=[1.0, 1.0, 1.0],

 xyz_orig=[0.0, 0.0, 0.0],

 ncxyz=[32, 32, 32])

recv_array, send_array =

CPL.get_arrays(recv_size=4, send_size=1)

for time in range(5):

 recv_array, ierr = CPL.recv(recv_array)

 send_array[0,:,:,:] = 2.*time

 CPL.send(send_array)

CPL.finalize()

MPI.Finalize()

#include "mpi.h"

#include "cpl.h"

…

int main() {

 MPI_Comm MD_COMM, CART_COMM;

 CPL::ndArray<double> send_array, recv_array;

 MPI_Init(NULL, NULL);

 CPL::init(CPL::MD_realm, MD_COMM);

 int npxyz[3] = {1, 1, 1}; …

 MPI_Cart_create(MD_COMM, 3, npxyz,

 periods, 1, &CART_COMM);

 double xyzL[3] = {1.0, 1.0, 1.0}; …

 CPL::setup_md(CART_COMM, xyzL, xyz_orig);

 CPL::get_arrays(&recv_array,1, &send_array,4);

 for (int time = 0; time < 5; time++) {

 send_array(0,0,0,0) = 5.*time;

 bool flag = CPL::send(&send_array);

 bool flag = CPL::recv(&recv_array);

 CPL::finalize();

 MPI_Finalize();

}

minimal_CFD.py minimal_MD.cpp

CFD
Processors

here

CFD
Grid
here

MD
Processors

here

No MD
grid

needed

Coupling Mocks – Fortran to C++

25minimal_CFD.f90 minimal_MD.cpp

CFD
Processors

here

CFD
Grid
here

MD
Processors

here

#include "mpi.h"

#include "cpl.h"

…

int main() {

 MPI_Comm MD_COMM, CART_COMM;

 CPL::ndArray<double> send_array, recv_array;

 MPI_Init(NULL, NULL);

 CPL::init(CPL::MD_realm, MD_COMM);

 int npxyz[3] = {1, 1, 1}; …

 MPI_Cart_create(MD_COMM, 3, npxyz,

 periods, 1, &CART_COMM);

 double xyzL[3] = {1.0, 1.0, 1.0}; …

 CPL::setup_md(CART_COMM, xyzL, xyz_orig);

 CPL::get_arrays(&recv_array,1, &send_array,4);

 for (int time = 0; time < 5; time++) {

 send_array(0,0,0,0) = 5.*time;

 bool flag = CPL::send(&send_array);

 bool flag = CPL::recv(&recv_array);

 CPL::finalize();

 MPI_Finalize();

}

program main_CFD

 use cpl

 use mpi

 implicit none

 integer :: time, CFD_COMM, CART_COMM, ierr, CFD_realm=1

 double precision, dimension(:,:,:,:), &

 allocatable :: send_array, recv_array

 call MPI_Init(ierr)

 call CPL_init(CFD_realm, CFD_COMM, ierr)

 call MPI_Cart_create(CFD_COMM, 3, (/1, 1, 1/), &

 (/.true.,.true.,.true./), &

 .true., CART_COMM, ierr)

 call CPL_setup_cfd(CART_COMM, (/1.d0, 1.d0, 1.d0/), &

 (/0.d0, 0.d0, 0.d0/), &

 (/32, 32, 32/))

 call CPL_get_arrays(recv_array, 4, send_array, 1)

 do time=1,5

 call CPL_recv(recv_array)

 send_array(1,:,:,:) = 2.*time

 call CPL_send(send_array)

 enddo

 call CPL_finalize(ierr)

 call MPI_finalize(ierr)

end program main_CFD

No MD
grid

needed

Running CPL library

• Before running anything, you should add libcpl to your path using the following

command:

source SOURCEME.sh

• Most common errors will be because you have not done this, e.g. “ImportError:

No module named cplpy” or “error: cpl.h: No such file or directory”

• As it is a library, you don’t run directly, must be linked into an executable, e.g.

cplf90 minimal_md.f90 -o ./md (or explicitly link -lcpl)

• which is run in shared or distinct mode

mpiexec -n 1 ./cfd : -n 1 ./md (shared)

mpiexec -n 1 ./cfd < different terminals > mpiexec -n 1 ./md

cplexec -c 1 ./cfd -m 1 ./md (cplexec Python wrapper)

26

Coupler Input file COUPLER.in

• The coupler setup (any inputs to coupled case which are not naturally specified in either code) are
included in cpl/COUPLER.in

• COUPLER.in inside the cpl folder must exist to run a coupled case

• Some three important ones are:

• 'FULL_OVERLAP' -- Specifies if overlap extents is all CFD cells (which is the case for granular

coupling)

• 'TIMESTEP_RATIO' -- ratio of timesteps in both MD/CFD codes

• ‘OVERLAP_EXTENTS’ – The number of cells which overlap

• ‘BOUNDARY_EXTENTS; - The region of the overlap where boundary values are taken

• ‘CONSTRAINT_INFO’ – The constraint to apply and region where it is applied

27

Changing Overlap Size

• Different COUPLER.in values set coupling overlap

28

OVERLAP_EXTENTS

1 Start in x

16 End in x

1 Start in y

3 End in y

1 Start in z

16 End in z

Specified as fraction
of CFD grid

Always use full overlap in x and z, only
change y. Number of cells defines
overlap (not origin or domain size)

Changing Location of Constrained Region

• Different COUPLER.in values set region of constraint applied in the overlap region

(as well as type of applied force type)

29

CONSTRAINT_INFO

2 Use Velocity Constraint

0 Flag for constraint control

1 Start in x

16 End in x

3 Start in y

3 End in y

1 Start in z

16 End in z

Constraint must be inside overlap

Changing Region Averaged to give CFD boundary

30

BOUNDARY_EXTENTS

1 Start in x

16 End in x

1 Start in y

1 End in y

1 Start in z

16 End in z

• Different COUPLER.in values set region to average for CFD boundary condition

Boundary must be inside overlap

Changing Region Averaged to give CFD boundary

• MD code must also choose what is averaged to give this boundary condition

31

➢ In MD code, we choose convention
➢ below CFD code might need halo cells

which are cell below overlap domain
➢ midplane surface fluxes use values at

interface (midplane) between overlap
and outside

➢ above Bottom of overlap region is
average and passed to CFD

This is still passed as data in the bottom cell
of the overlap region.

bndryavg above
bndryavg midplane

bndryavg below

Design and Test Different Topologies / Communication

• From cpl-library/utils/design_topology/ a gui (needing wxPython) run with

 python cpl_gridsetup.py

32

Creates mock codes with this
topology, sends sine waves to
check and plots output

• Doubling Resolution in CFD and number of processors in CFD domain results in the

following output

33

Creates mock codes with this
topology, sends sine waves to
check and plots output

Design and Test Different Topologies / Communication

34

Other Software

➢ PyDataView

➢ A way of viewing OpenFOAM, LAMMPS and coupled runs

➢ python3 pyDataView -d ./path/to/openfoam/output but needs wxPython, matplotlib, numpy,

scipy and vispy (if you want to view molecules)

➢ Cloned from https://github.com/edwardsmith999/pyDataView

➢ SimWrapLib

➢ Used to run coupled runs over a range of parameters

➢ Used for tests over a range of values

➢ https://github.com/edwardsmith999/SimWrapPy

https://github.com/edwardsmith999/pyDataView
https://github.com/edwardsmith999/SimWrapPy

Disclaimer

➢ This is still a research code, lots of thing will be rough around the edges

➢ The only case currently supported is total overlap in x and z with some number of

cells overlapping in y (because that’s the only case we needed for our work).

Other cases can be setup that may not work – we have error to stop some cases but

not possible to predict/catch all cases

➢ We have built up a testing framework to hopefully extend to more complex cases

in the future (if needed).

➢ Through tests and minimal scripts, we have created a (hopefully) clear way to

develop and test code

➢ Deployment on ARCHER2 works with module system.

➢ Please help by adding working cases with automated tests (GitHub pull request).

➢ Please report anything which does not work as expected (GitHub issues).

35

Summary

• We are coupling two separate codes to run together

• Computational Fluid Dynamics

• Molecular Dynamics

• Build codes separately and exchange all information as average fields

through shared library (CPL library)

• This is good because it:

• Allows separate testing of both codes

• Maintains scope of both codes

• Promotes optimal scaling

36

LAMMPS

eCSE06-01: “Hybrid Atomistic-Continuum Simulations
of Boiling Across Scales”

➢Discrete molecules in continuous space
➢Molecular position evolves continuously in time

➢Acceleration→Velocity→Position

➢Acceleration obtained from forces
➢Governed by Newton’s law for an N-body system

➢Pairwise electrostatics interactions from quantum mechanics

Molecular Dynamics

i

38

39https://fluids.ac.uk/sig/NonEqmMD

➢Non-Equilibrium Molecular Dynamics (NEMD) is the study of cases beyond
thermodynamic equilibrium, with:
➢Temperature gradients

➢Flow of fluid (e.g. Couette or Poiseuille flow)

➢Essentially fluid dynamics - temperature gradients and flows
➢Thermostats (e.g. Nosé Hoover)

➢Solids of molecules with (an)harmonic

 springs linking them to tether site

➢Sliding walls by moving molecules

➢Many other techniques for inducing flows…

Non-Equilibrium Molecular Dynamics

LAMMPS

• Sponsored by Sandia national

labs with a great community of

developers, documentation, etc

• Written in C++ and designed to

be highly scalable and

extensible

• A very minimal set of core code

and a system of fixes which

provide most functions

40

Compiling LAMMPS

• You can see included

packages with

make ps

• Turn on packages with

make yes-package-name

• And build LAMMPS with

MPI included using

make mpi

Which builds Makefile.mpi

41

• LAMMPS is made of a selection of packages – basically code in folders

LAMMPS Input Format

• We can create walls

and fluid in LAMMPS

42

Processor
topology

FCC lattice
units (not
domain size)

LAMMPS Input Format

• For tethered walls we need to create virtual

atom sites (type 3) with bonds to wall atoms

(type 2) and no interaction with fluid (type 1)

43

Type 3 are sites so interactions
set to zero

But bonds (spring) created to
type 2

Coupling Overview

www.cpl-library.orgFlowMol

libcpl.so

CPL_init(COMM, realm)

CPL_setup(cells, domain, topology)

 CPL_recv(U, P) CPL_send(U, P)

 CPL_send(F, e) CPL_recv(F, e)

LAMMPS or

44

Coupling Overview

LAMMPS

45

Buffer

Buffer

Coupling Overview

LAMMPS

46

CFD→MD

Boundary

condition

MD→CFD

Boundary

condition

Force applied to MD to make it
agree with CFD here

Average of MD to be passed to
CFD as boundary condition

Extending the Code of LAMMPS

• A “hook” system which

allow users to develop

code

• These can be inserted

anywhere, e.g. pre_force or

end_of_step

• Large portions of the code

contributed by the

community – “packages”

loop over N timesteps:
ev_set()
fix->initial_integrate()
fix->post_integrate()
nflag = neighbor->decide()
if nflag:

fix->pre_exchange()
domain->pbc()
domain->reset_box()
comm->setup()
neighbor->setup_bins()
comm->exchange()
comm->borders()
fix->pre_neighbor()
neighbor->build()

else
 comm->forward_comm()

force_clear()
fix->pre_force()
pair->compute()
bond->compute()
angle->compute()
dihedral->compute()
improper->compute()
kspace->compute()
comm->reverse_comm()
fix->post_force()
fix->final_integrate()
fix->end_of_step()
output->write()

47

Extending LAMMPS for Coupling

• Turn on with

 make yes-user-cpl

• And build LAMMPS including

libcpl.so with

 make cpl

which builds Makefile.cpl

• Not in LAMMPS so we have to

copy these USER-CPL and

Makefile.cpl in

48

• We add in USER-CPL package

CPL_APP_LAMMPS

Common code here – could be used for

other applications

fix_cpl_force is a fix to apply force

to all particles in LAMMPS

fix_cpl_init

Setup a coupled run in LAMMPS

49

• We have an APP code to take care of this patching, etc

Compiling the APP

• The APP contains USER-CPL, a LAMMPS fix, copied to the LAMMPS directory

• Set the location of your version of LAMMPS in CODE_INST_DIR

• Once CODE_INST_DIR exists, linking to libcpl.so and building is all automated
by a call to make

• Further patching needed for shared paradigm as LAMMPS assumed it has

unique MPI_COMM_WORLD

• Add packages by changing config/lammps_packages.in in

CPL_APP_LAMMPS-DEV

• You can also rebuild directly in lammps/src once USER-CPL is copied over

 make yes-some-package

 make cpl

50

Running Coupled LAMMPS

• A coupled run is triggered by adding the following to the input system

in LAMMPS

fix ID all cpl/init region all args

• The args specify how to use CFD values to get a force (forcetype) and

information to send to CFD (sendtype)

• The forcetype and sendtype must match the information sent and received

by the CFD

• Example use

Fix cplfix all cpl/init region all forcetype Velocity xi 1.0

sendtype velocity bndryavg below

52

54

Coupled CFD-MD Simulation

CFD→MD

Boundary

condition

MD→CFD

Boundary

condition

Buffer

forcetype

sendtype

Available Forcetypes

⚫ The forcetype itself is specified by next word,

⚫ For MD flows, this can either be Velocity or Stresses.

⚫ For granular flows can be a range of drag models Test, Drag, Stokes,

Di_Felice, Ergun, Tang, BVK.

⚫ Designed to be easy to add new ones.

⚫ Some forcetypes require additional inputs, added as words followed by

true/false or setting of values (see www.cpl-library.org for documentation):

− overlap, interpolate gradP, divStress, preforce_everytime (true/false)

− Cd, mu, rho (values)

55

http://www.cpl-library.org/

56

➢Velocity (State Coupling)* (CPLForceVelocity)

➢Stress (Flux Coupling)** (CPLForceFlekkoy)

Types of MD Coupling Forces

*O’Connell and Thompson (1995) and Nie et al (2004) ** Flekkoy et al (2000)

Stress tensor from CFDWeighting function to
distribute force on molecules

Available Sendtypes

• A range of possible field based quantities can be calculated and sent by adding in

any order after sendtype

• Fundamental Types

⚫ NBINS – Number of particles in a volume

⚫ VEL – sum of velocity in a volume

⚫ STRESS – Virial style stess in particle system

• Mixed types include:

⚫ velocity = VEL + NBIN

57

➢See CPL library wiki: https://www.cpl-library.org/docs/Main_Page.shtml

➢The LAMMPS section has a tutorial on designing new force types
➢This force can then

 be included in

 LAMMPS as outlined

 in fix_cpl_force

CPL force and developing new ones

58

https://www.cpl-library.org/docs/Main_Page.shtml

Summary

• LAMMPS is a powerful MD tool

• We can extend by adding package USER-CPL for coupling

• CPL_APP_LAMMPS-DEV does this for you (to build lmp_cpl)

• Available pre-built as ARCHER2 module

• To setup a coupled run

• Add a Fix cplfix to the LAMMPS input:

Fix cplfix all cpl/init region all forcetype Velocity xi 1.0

sendtype velocity bndryavg below

• Different sendtypes and forcetypes are available

• Easy to extend in order to add your own

• A COUPLER.in file will also be needed (as discussed in the next section)

59

Coupled Couette Flow

eCSE06-01: “Hybrid Atomistic-Continuum Simulations
of Boiling Across Scales”

https://github.com/Crompulence/cpl-library/tree/master/examples/LAMMPS_OPENFOAM

Full example code can be found here:

Needs both APPS installed:
https://github.com/Crompulence/CPL_APP_LAMMPS-DEV
https://github.com/Crompulence/CPL_APP_OPENFOAM

https://github.com/Crompulence/cpl-library/tree/master/examples/LAMMPS_OPENFOAM
https://github.com/Crompulence/CPL_APP_LAMMPS-DEV
https://github.com/Crompulence/CPL_APP_OPENFOAM

61

• Finite Volume Solver

Domain Decomposition Coupling

• Discrete molecules

Share the same
time and length

scales

O’Connell Thompson (1995), Hadjiconstantinou (1998), Flekkoy (2000), Nie et al (2004).

62

• Finite Volume Solver

Coupled CFD-MD Simulation

• Discrete molecules

CFD→MD

Boundary

condition

MD→CFD

Boundary

condition

Buffer

forcetype

sendtype

Coupling Results – Couette Flow

CFD

Overlap

MD

Buffer

Constraint

CFD Boundary

63

Coupling Results – Couette Flow with Wall Roughness

Rough wall shifts

zero location

CFD

Overlap

MD

Buffer

Constraint

CFD Boundary

64

Coupling Results – Couette Flow with Wall Texture (superhydrophobic)

CFD

Overlap

MD
Posts shift zero

location

Buffer

CFD Boundary

Constraint

65

Coupling Results – Polymer Brushes for Tribology

66

Coupling Results – Turbulent Couette

MD CFD OpenFOAM

Loglaw

Buffer

Viscous

MD

67

A note on Numerics

• Stability – Numerical blowup is a big problem in CFD with CFL

number based on timestep, velocity and grid resolution a first check

• OpenFOAM priorities stability but can still be subject to numerical

instability, very difficult to debug if this is because of

• An error in coupling exchange (coding/setup)

• Too much noise passed from the MD causing an instability

• A numerical instability in OpenFOAM itself (i.e. CFL violated or a

non-linear instability)

• So, we suggest using Mocks

68

Start with the Mocks!

69

minimal_CFD.py

minimal_MD.py

• Step 1 – send a boundary condition and check CFD response

• Step 2 – apply a constant force and check MD averaging is correct

• Step 3 – compare overall system to analytical solution (if possible)

• Step 0 – check geometry, processor topology and visualise

minimal_MD.py minimal_CFD.py

Start with the Mocks!

70

• Step 0 – check geometry, processor topology and visualise

minimal_MD.py minimal_CFD.py

minimal MD and minimal CFD

71

• Step 0 – check geometry, processor topology and visualise

minimal_MD.py minimal_CFD.py

region simbox block 0 $x ${ylobuf} ${y} 0 $z

variable x equal 10
variable y equal 24
variable z equal 10

• LAMMPS setup in FCC units

• Run to see physical domain size, in
log.lammps we see

Created orthogonal box = (0 -5.0387886 0)
to (16.795962 40.310309 16.795962)

processors 2 1 1
Grid is 8 by 8 by 8

Then run to make sure it works

72

• Step 0 – check geometry, processor topology and visualise

minimal_MD.py minimal_CFD.py

region simbox block 0 $x ${ylobuf} ${y} 0 $z

variable x equal 10
variable y equal 24
variable z equal 10

• LAMMPS setup in FCC units

• Run to see physical domain size, in
log.lammps we see

Created orthogonal box = (0 -5.0387886 0)
to (16.795962 40.310309 16.795962)

processors 2 1 1
Grid is 8 by 8 by 8

Then run to make sure it works

minimal MD and minimal CFD

73

• Step 0 – check geometry, processor topology and visualise

minimal_MD.py

Parameters of the cpu topology (cartesian grid)

npxyz = [2, 1, 1]

xyzL = [16.795961913825074, 45.349097,

 16.795961913825074]

…

#Setup coupled simulation

…

CPL.setup_md(cart_comm, xyzL, xyz_orig)

Change domain to match
desired LAMMPS
domain size

COUPLER.in

Variable
OVERLAP_
EXTENTS

CONSTRAINT
_INFO

BOUNDARY_E
XTENTS

Forcetype 2

Flag 0

xmin 1 1 1

xmax 8 8 8

ymin 1 3 1

ymax 4 3 1

zmin 1 1 1

zmax 8 8 8

minimal MD and minimal CFD

Setup overlap region in cells

74

• Change COUPLER.in to set coupling overlap

OVERLAP_EXTENTS

1 Start in y

4 End in y

CONSTRAINT_INFO

3

3

BOUNDARY_EXTENTS

1

1

minimal MD and minimal CFD

75

minimal_MD.py

• Step 1 – send a boundary condition and check CFD response

• Step 0 – check geometry, processor topology and visualise

minimal_MD.py minimal_CFD.py

minimal MD and OpenFOAM

76

Next, we need to setup OpenFOAM to match

➢ Typical folder tree structure of any OpenFOAM simulation

➢ Boundary conditions

In 0.orig/U:

boundaryField

{

 CPLReceiveMD

 {

 type fixedValue;

 value $internalField;

 }

• Bottom boundary is set to CPLRecieveMD
type, the sendtype from LAMMPS

• Exchange handled internally by CPL library

77

Overview of the OpenFOAM configuration files

In constant/polyMesh/blockMeshDict

scale 16.795961913825074;

vertices

(

 (0 0 0)

 (1.0 0 0)

 (1.0 2.7 0)

 (0 2.7 0)

 (0 0 1.0)

 (1.0 0 1.0)

 (1.0 2.7 1.0)

 (0 1.0 1.0)

);

blocks(hex (0 1 2 3 4 5 6 7) (8 8 8) simpleGrading (1 1 1));

boundary

(

…

 CPLReceiveMD

 {

 type patch;

 faces

 (

 (1 5 4 0)

);

 }

➢ Mesh

Grid is 8 by 8 by 8

78

Overview of the OpenFOAM configuration files

decomposeParDict

Setup for parallel

decomposition

In system/decomposeParDict

numberOfSubdomains 2;

method simple;

simpleCoeffs

{

 n (2 1 1);

 delta 0.001;

➢ Domain parallel decomposition

Processor topology is
2 by 1 by 1

Overview of the OpenFOAM configuration files

79

In 0.orig/U:

boundaryField

{

 CPLReceiveMD

 {

 type fixedValue;

 value $internalField;

 }

In constant/polyMesh/blockMeshDict

scale 16.795961913825074;

vertices

(

 (0 0 0)

 (1.0 0 0)

 (1.0 2.7 0)

 (0 2.7 0)

 (0 0 1.0)

 (1.0 0 1.0)

 (1.0 2.7 1.0)

 (0 1.0 1.0)

);

blocks(hex (0 1 2 3 4 5 6 7) (8 8 8) simpleGrading (1 1 1));

boundary

(

…

 CPLReceiveMD

 {

 type patch;

 faces

 (

 (1 5 4 0)

);

 }

In system/decomposeParDict

numberOfSubdomains 2;

method simple;

simpleCoeffs

{

 n (2 1 1);

 delta 0.001;

Topology

Boundary Condition

Setup identical to
minimal_CFD.py
so we can swap out
for OpenFOAM

80

minimal_MD.py

• Step 1 – send a boundary condition and check CFD response

• Step 0 – check geometry, processor topology and visualise

minimal_MD.py minimal_CFD.py

send_array[0,:,:,:] = testBC

CPL.send(send_array)

CPL.recv(recv_array)

test_data(recv_array)

• Specify boundary
condition to drive flow

• Test response against
analytical solution for

Couette flow

minimal MD and OpenFOAM

Start with the Mocks!

81

minimal_CFD.py

minimal_MD.py

• Step 1 – send a boundary condition and check CFD response

• Step 2 – apply a constant force and check MD averaging is correct

• Step 0 – check geometry, processor topology and visualise

minimal_MD.py minimal_CFD.py

LAMMPS Input Format

82

Turn on coupling case and specify velocity constraint force (forcetype)

and velocity/density averaging and exchange (sendtype)

fix cplfix all cpl/init region all forcetype Velocity xi 1.0

 sendtype velocity bndryavg below

Take an MD Couette flow
case and cut the top off

LAMMPS Input Format

83

bndryavg below

Average of
region below

Constraint location
specified in COUPLER.in
Forcetype chosen below

forcetype

sendtype

Turn on coupling case and specify velocity constraint force (forcetype)

and velocity/density averaging and exchange (sendtype)

fix cplfix all cpl/init region all forcetype Velocity xi 1.0

 sendtype velocity bndryavg below

Start with the Mocks!

84

minimal_CFD.py

minimal_MD.py

• Step 1 – send a boundary condition and check CFD response

• Step 2 – apply a constant force and check MD averaging is correct

• Step 0 – check geometry, processor topology and visualise

minimal_MD.py minimal_CFD.py

send_array[0,:,:,:] = testforce

CPL.send(send_array)

CPL.recv(recv_array)

test_data(recv_array)

• Apply force
• Compare received

value to analytical
Couette solution

Start with the Mocks!

85

minimal_CFD.py

minimal_MD.py

• Step 1 – send a boundary condition and check CFD response

• Step 2 – apply a constant force and check MD averaging is correct

• Step 0 – check geometry, processor topology and visualise

minimal_MD.py minimal_CFD.py

• Step 3 – compare overall system to analytical solution (if possible)

Hands on Example using ARCHER2

86

• Step 3 – compare overall system to analytical solution (if possible)

#Load Modules
module load other-software

module load cpl-openfoam

source $FOAM_CPL_APP/SOURCEME.sh

module load cpl-lammps

#copy examples

cd ${HOME/home/work/}

cp –r $CPL_PATH/examples/LAMMPS_OPENFOAM .

cd LAMMPS_OPENFOAM

Submit job

sbatch example_archer2.bat

Hands on Example using ARCHER2

87

• Step 3 – compare overall system to analytical solution (if possible)

#Getting Plotting prerequists
module load cray-python

python -m venv --system-site-packages

${HOME/home/work/}/myvenv

source ${HOME/home/work/}/myvenv/bin/activate

python -m pip install -U pip

python -m pip install -U matplotlib pyqt5

git clone github.com:edwardsmith999/pyDataView.git

#Then edit
vi plot_coupled.py

#To change path to where pyDataView is cloned
ppdir = ‘./pyDataView/’

sys.path.append(ppdir)

import postproclib as ppl

Be sure to have x

forwarding on (ssh –X)
python plot_coupled.py

mailto:git@github.com

This Can be Improved With Bigger MD Domain

88

CFD

Overlap

MD

Buffer

Constraint

CFD Boundary

Summary

• Unsteady Couette Flow is the canonical test case for coupling

• Wall driven and we have an analytical solution

• Requires two-way coupling to be working in order to get correct agreement

• Shown the example of OpenFOAM and LAMMPS on ARCHER2

• Starting from two mock or dummy scripts to get geometry

• Then coupled each code with a dummy and test Couette flow

• Finally coupled directly and validate with analytical solution

• The same workflow should be applied to all new cases developed

• Tests should be designed and automated for both mock-code combinations

• It is almost impossible to debug errors in the full coupled case

89

	Slide 1
	Slide 3: CPL Library
	Slide 4
	Slide 5
	Slide 6: Coupling Overview
	Slide 7: Granular Mechanics
	Slide 9
	Slide 11
	Slide 12
	Slide 13: CPL Library - Linking Cartesian Grids Between 2 Codes
	Slide 15: Weak Scaling of CPL-Library on ARCHER
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: LAMMPS
	Slide 38: Molecular Dynamics
	Slide 39: Non-Equilibrium Molecular Dynamics
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44: Coupling Overview
	Slide 45: Coupling Overview
	Slide 46: Coupling Overview
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 52
	Slide 54
	Slide 55
	Slide 56: Types of MD Coupling Forces
	Slide 57
	Slide 58: CPL force and developing new ones
	Slide 59
	Slide 60: Coupled Couette Flow
	Slide 61
	Slide 62
	Slide 63: Coupling Results – Couette Flow
	Slide 64: Coupling Results – Couette Flow with Wall Roughness
	Slide 65: Coupling Results – Couette Flow with Wall Texture (superhydrophobic)
	Slide 66: Coupling Results – Polymer Brushes for Tribology
	Slide 67: Coupling Results – Turbulent Couette
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79: Overview of the OpenFOAM configuration files
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89

