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Main objectives

1. Extend PETSc’s metric-based mesh 
adaptation functionality.

2. Pipe PETSc’s mesh adaptation 
functionality through to Firedrake.

3. Develop a new goal-oriented error 
estimation and mesh adaptation 
module, Pyroteus.

4. Applications and documentation.
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1. Metric-based
mesh adaptation in 
PETSc and Firedrake



Riemannian metric fields
An 𝑛𝐷 Riemannian metric, ℳ = {𝑴 𝒙 }𝒙∈Ω, 

takes the value of an 𝑛 × 𝑛 symmetric 

positive-definite (SPD) matrix at each point.

The space-time of general relativity
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An 𝑛𝐷 Riemannian metric, ℳ = {𝑴 𝒙 }𝒙∈Ω, 
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2D metric-based mesh adaptation

Minimise a quality function,

𝑄ℳ 𝐾 =
3

2

σ𝛾∈𝜕𝐾 ℓℳ 𝛾 2

𝐾 ℳ

for each mesh element 𝐾, by applying 

mesh modification operations.

Here 𝑄ℳ 𝐾 is minimised if 𝐾 is an 

equilateral triangle with unit edges.



3D metric-based mesh adaptation

Minimise a quality function,

𝑄ℳ 𝐾 =
3

216

(σ𝛾∈𝜕𝐾 ℓℳ 𝛾 2)
3
2

𝐾 ℳ

for each mesh element 𝐾, by applying 

mesh modification operations.

Here 𝑄ℳ 𝐾 is minimised if 𝐾 is a 

regular tetrahedron with unit edges.



Creating metric fields in PETSc

Isotropic metrics can be constructed 

easily: 

ℳ = 𝜀𝑰.

A common choice of anisotropic metric 

is to use the Hessian of a field of 

interest, 𝑢: 

𝑯 𝑢 = 𝑽𝚲𝑽𝑻.

There are bounds on the interpolation 

error in 𝑢 involving the Hessian.

DMPlexMetricCreate
DMPlexMetricCreateIsotropic
DMPlexMetricCreateUniform
DMPlexComputeGradientClementInterpolant

DMPlexMetricEnforceSPD
DMPlexMetricSetMinimumMagnitude
DMPlexMetricSetMaximumMagnitude
DMPlexMetricSetMaximumAnisotropy
DMPlexMetricSetTargetComplexity
DMPlexMetricSetNormalizationOrder
DMPlexMetricNormalize
DMPlexMetricSetGradationFactor
DMPlexMetricSetHausdorffNumber

DMPlexMetricAverage
DMPlexMetricIntersection



Processing metric fields in PETSc
DMPlexMetricCreate
DMPlexMetricCreateIsotropic
DMPlexMetricCreateUniform
DMPlexComputeGradientClementInterpolant

DMPlexMetricEnforceSPD
DMPlexMetricSetMinimumMagnitude
DMPlexMetricSetMaximumMagnitude
DMPlexMetricSetMaximumAnisotropy
DMPlexMetricSetTargetComplexity
DMPlexMetricSetNormalizationOrder
DMPlexMetricNormalize
DMPlexMetricSetGradationFactor
DMPlexMetricSetHausdorffNumber

DMPlexMetricAverage
DMPlexMetricIntersection

To make sure we have a metric, 

Hessians should be made SPD:

|𝑯| = 𝑽 𝚲 𝑽𝑻.

We can (approximately) enforce 

minimum/maximum element sizes by 

modifying 𝚲.

It is usually a good idea to normalise 

the metric, too.



Combining metric fields in PETSc

Often there are multiple metrics that 

we want to take account of.

Metric averaging: mathematically 

simple, but not geometrically intuitive.

Metric intersection: geometrically 

intuitive, but not mathematically 

simple.

DMPlexMetricCreate
DMPlexMetricCreateIsotropic
DMPlexMetricCreateUniform
DMPlexComputeGradientClementInterpolant

DMPlexMetricEnforceSPD
DMPlexMetricSetMinimumMagnitude
DMPlexMetricSetMaximumMagnitude
DMPlexMetricSetMaximumAnisotropy
DMPlexMetricSetTargetComplexity
DMPlexMetricSetNormalizationOrder
DMPlexMetricNormalize
DMPlexMetricSetGradationFactor
DMPlexMetricSetHausdorffNumber

DMPlexMetricAverage
DMPlexMetricIntersection



DMPlexMetricCreate
DMPlexMetricCreateIsotropic
DMPlexMetricCreateUniform
DMPlexComputeGradientClementInterpolant

DMPlexMetricEnforceSPD
DMPlexMetricSetMinimumMagnitude
DMPlexMetricSetMaximumMagnitude
DMPlexMetricSetMaximumAnisotropy
DMPlexMetricSetTargetComplexity
DMPlexMetricSetNormalizationOrder
DMPlexMetricNormalize
DMPlexMetricSetGradationFactor
DMPlexMetricSetHausdorffNumber

DMPlexMetricAverage
DMPlexMetricIntersection

plex.metricCreate
plex.metricCreateIsotropic
plex.metricCreateUniform
plex.computeGradientClementInterpolant

plex.metricEnforceSPD
plex.metricSetMinimumMagnitude
plex.metricSetMaximumMagnitude
plex.metricSetMaximumAnisotropy
plex.metricSetTargetComplexity
plex.metricSetNormalizationOrder
plex.metricNormalize
plex.metricSetGradationFactor
plex.metricSetHausdorffNumber

plex.metricAverage
plex.metricIntersection

Using metric utilities in petsc4py



class RiemannianMetric(Metric):

def set_parameters(self, **kwargs):
…

def enforce_spd(self, **kwargs):
…

def normalise(self, **kwargs):
…

def average(self, *metrics):
…

def intersect(self, *metrics):
…

…

Proposed implementation gathers 

petsc4py metric utilities in a 

Riemannian metric class.

The underlying field data can be 

accessed and modified on either the 

Firedrake level (Function) or PETSc 

level (Vec).

Metric fields in Firedrake



Poisson test case in PETSc

Consider the Poisson problem

Δ𝑢 = 𝑓

on the unit cube with Dirichlet 

conditions.

We can manufacture an analytical 

solution by choosing 𝑓 appropriately.

Example 1: 𝑢 𝑥, 𝑦, 𝑧 =
4

3
𝑥2 + 𝑦2 + 𝑧2 .

Δ𝑥 ≈ (element count)−
1
3



Poisson test case in PETSc

Consider the Poisson problem

Δ𝑢 = 𝑓

on the unit cube with Dirichlet 

conditions.

We can manufacture an analytical 

solution by choosing 𝑓 appropriately.

Example 2: (smoothed) spherical 

indicator function.

Δ𝑥 ≈ (element count)−
1
3



Δ𝑥 ≈ (element count)−
1
3

Poisson test case in Firedrake



PETSc’s mesh-to-mesh interpolation functionality does not currently work in 

parallel. Firedrake is similarly limited.

Source mesh Target mesh

0 0

1 1
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PETSc’s mesh-to-mesh interpolation functionality does not currently work in 

parallel. Firedrake is similarly limited.

Source mesh Target mesh

0 0

1 1

Scatter

Scatter

Parallel mesh-to-mesh interpolation



1. Metric-based mesh adaptation:
Summary of achievements

– Coupled Mmg and ParMmg mesh adaptation tools to PETSc.

– Implemented routines for creating, modifying and combining Riemannian 

metrics in PETSc, plus Python bindings.

– Added new PETSc tests and tutorials.

– Open pull request for piping functionality from PETSc to Firedrake.

– Proposed RiemannianMetric class.

– Basic tests of functionality.

– Open merge request for parallel mesh-to-mesh interpolation in PETSc.

– Basic tests of functionality.



2. Goal-oriented 
error estimation and 
mesh adaptation 
using Pyroteus



Goal-oriented error estimation
Variational form: 

𝑎 𝑢, 𝑣 = 𝐿 𝑣 , ∀𝑣 ∈ 𝑉.

Weak form: 

𝑎 𝑢ℎ, 𝑣 = 𝐿(𝑣), ∀𝑣 ∈ 𝑉ℎ ⊂ 𝑉.

Weak residual: 

ρ 𝑢ℎ, 𝑣 = 𝐿 𝑣 − 𝑎 𝑢ℎ, 𝑣 , 𝑣 ∈ 𝑉.
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Adjoint weak form:

𝑎 𝑣, 𝑢ℎ
∗ = 𝐽 𝑣 , ∀𝑣 ∈ 𝑉ℎ.
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𝐽 𝑢 − 𝐽 𝑢ℎ ≈ ρ 𝑢ℎ, 𝑢
∗ − 𝑢ℎ

∗ .



Goal-oriented error estimation

Main difficulties:

– The true adjoint solution is generally unknown.

– We need to approximate it, e.g. by solving the adjoint problem again in an 

enriched finite element space.

– For time-dependent problems, we need to be able to solve both forward and 

adjoint problems across sequences of meshes.



Pyroteus goal-oriented error estimation toolkit

To tackle the time-dependent adaptation problem, we make use of a “mesh 

sequence”, MeshSeq. The user just needs to provide:

TimePartition object

list of meshes

get_function_spaces(mesh)

get_form(mesh_seq)

get_solver(mesh_seq)

get_initial_condition(mesh_seq)



2. Goal-oriented error estimation and mesh adaptation 
using Pyroteus: Summary of achievements

Provided this information and a get_qoi(mesh_seq) function, the 

GoalOrientedMeshSeq subclass allows us to:

– Solve the forward problem over all meshes.

– Solve the adjoint problem over all meshes.

– Solve the adjoint problem over all “enriched” meshes.

– Compute goal-oriented error estimators based on this information.

– Perform goal-oriented mesh adaptation in a “fixed point iteration” type 

approach.



3. Applications and 
documentation



2D steady-state tracer transport test case

Consider the advection-diffusion problem

𝐮 ⋅ ∇𝑐 − ∇ ⋅ 𝐷∇𝑐 = 𝑓, 𝑐 ∈ 𝑃1

in a rectangular domain, where 𝑓 is a 

point source. QoI: tracer concentration 𝑐
in “receiver region”.

“Anisotropic DWR”

“Weighted Hessian”

“Weighted gradient”



2D steady-state tracer transport test case



3D steady-state tracer transport test case

“Isotropic DWR”

“Anisotropic DWR”

“Weighted Hessian”

Consider the same advection-diffusion 

problem

𝐮 ⋅ ∇𝑐 − ∇ ⋅ 𝐷∇𝑐 = 𝑓, 𝑐 ∈ 𝑃1,

but extended to 3D in a cuboid domain. 

Again, QoI: tracer concentration 𝑐 in 

“receiver region”.



2D time-dependent desalination test case

Time-dependent advection-diffusion,
𝜕𝑠

𝜕𝑡
+ 𝐮 ⋅ ∇𝑠 − ∇ ⋅ 𝐷∇𝑠 = 𝑓, 𝑠 ∈ 𝑃1.

QoI: salinity 𝑠 at inlet pipe.“Outlet pipe” “Inlet pipe”



2D time-dependent desalination test case
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2D time-dependent desalination test case



2D time-dependent tidal farm test case

• Nonlinear shallow water equations. 

Solved for velocity and free surface 

elevation.

• QoI: energy output of tidal farm.

• 𝑃1𝐷𝐺 − 𝑃1𝐷𝐺 spatial discretisation with 

Roe fluxes, interior penalty method and 

Lax-Friedrichs stabilisation.

• Crank-Nicolson timestepping.



2D time-dependent tidal farm test case
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2D time-dependent tidal farm test case

Energy output comparison

Relative differences in energy output



2D time-dependent tidal farm test case

Energy output comparison

Relative differences in energy output



petsc.org

https://petsc.org/release/docs/manual/


firedrakeproject.org

https://firedrakeproject.org/


pyroteus.github.io

https://pyroteus.github.io/


3. Applications and documentation:
Summary of achievements

– Tested functionality in two research papers.

– Metric-based mesh adaptation section in the PETSc manual.

– Extension of existing Firedrake documentation.

– Created a webpage for Pyroteus: pyroteus.github.io, including plenty of 
documentation and demos.

https://pyroteus.github.io/
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About eCSE work

– JGW, M. G. Knepley, N. Barral, M. D. Piggott, Parallel metric-based mesh adaptation in 

PETSc using ParMmg, 30th International Meshing Roundtable (2022), 

doi:10.48550/arXiv.2201.02806. 
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International Meshing Roundtable (in preparation).

Using eCSE work

– JGW, N. Barral, D. A. Ham, M. D. Piggott, Goal-oriented error estimation and mesh 

adaptation for tracer transport modelling, Computer-Aided Design 145 (2022): 103187, 

doi:10.1016/j.cad.2021.103187.
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Thanks for listening!


