::.-:; pNipay=g mperial College

(Goal-oriented
mesh adaptation
for Firedrake

Pl: Matt Piggott

Technical staff: Joe Wallwork

Metric-based mesh adaptation

M ai n O bj eCtiVGS Mmg package. Written in C.

Solver library (amongst much
more!). Written in C.

1. Extend PETSc’s metric-based mesh PETSC
adaptation functionality.

2. Pipe PETSc’s mesh adaptation

functionality through to Firedrake. Finite element library. Written

in Python, with automatic C
code generation.

Firedrake
3. Develop a new goal-oriented error

estimation and mesh adaptation

module, Pyroteus.
. . . Goal-oriented error estimation
4. Applications and documentation. Pyroteus module. Written in Python. I

Metric-based mesh adaptation

M ai n O bj eCtiveS Mmg package. Written in C.

Solver library (amongst much
more!). Written in C.

1. Extend PETSc’s metric-based mesh PETSc
adaptation functionality.

2. Pipe PETSc’s mesh adaptation

functionality through to Firedrake. Finite element library. Written

in Python, with automatic C
code generation.

Firedrake
3. Develop a new goal-oriented error

estimation and mesh adaptation

module, Pyroteus.
. . . Goal-oriented error estimation
4. Applications and documentation. Pyroteus module. Written in Python. I

Metric-based mesh adaptation

M ai n O bj eCtiveS Mmg package. Written in C.

Solver library (amongst much
more!). Written in C.

1. Extend PETSc’s metric-based mesh PETSc
adaptation functionality.

2. Pipe PETSc’s mesh adaptation

functionality through to Firedrake. Finite element library. Written

in Python, with automatic C
code generation.

Firedrake
3. Develop a new goal-oriented error

estimation and mesh adaptation

module, Pyroteus.
Goal-oriented error estimation

4. Applications and documentation. Pyroteus module. Written in Python. I

Metric-based mesh adaptation

M ai n O bj eCtiveS Mmg package. Written in C.

Solver library (amongst much
more!). Written in C.

1. Extend PETSc’s metric-based mesh PETSc
adaptation functionality.

2. Pipe PETSc’s mesh adaptation

functionality through to Firedrake. Finite element library. Written

in Python, with automatic C
code generation.

Firedrake
3. Develop a new goal-oriented error

estimation and mesh adaptation

module, Pyroteus.
. . . Goal-oriented error estimation
4. Applications and documentation. Pyroteus module. Written in Python. I

1. Metric-based
mesh adaptation in
PETSc and Firedrake

Riemannian metric fields

E—
An nD Riemannian metric, M' = {M(x)},eq,
takes the value of an n X n symmetric

positive-definite (SPD) matrix at each point.

The space-time of general relativity

Riemannian metric fields

An nD Riemannian metric, M' = {M(x)},eq,
takes the value of an n X n symmetric
positive-definite (SPD) matrix at each point.

Symmetry implies
M(x) = V(x)AX)V" (),

B[=

" wWhere

A(x) — dlag(ll (x)r ...,An(x)),
V) = [vi(x) .. vp(x)].

=

Positive-definiteness implies
Ai > O,Vi = 1:n.

-t

Define h; := 1/\/—_,‘v’i = 1:n.

Riemannian metric fields

An nD Riemannian metric, M' = {M(x)},eq,
takes the value of an n X n symmetric
positive-definite (SPD) matrix at each point.

Symmetry implies
M(x) = V(x)AX)V" (),

B[=

" wWhere

A(x) — dlag(ll (x)r ...,An(x)),
V) = [vi(x) .. vp(x)].

=

Positive-definiteness implies
Ai > O,Vi = 1:n.

-t

Define h; := 1/\/—_,‘v’i = 1:n.

2D metric-based mesh adaptation

S

_node
msertion

edge
swap

—

node
deletion

ﬁ

node
movement

Minimise a quality function,

\/§ ZyeaK fM (y)Z

Qrp(K) = > K Tor

for each mesh element K, by applying
mesh modification operations.

Here Qy(K) is minimised if K is an
equilateral triangle with unit edges.

-t

3D metric-based mesh adaptation

o

N

Minimise a quality function,

3
V3 Cyeax tac(1)?)?
Qe (K) = 16 K

AR
ﬁ \‘ for each m.e.sh e.lement K,'by applying
- mesh modification operations.

Here Qy,(K) is minimised if K is a
, , 4 regular tetrahedron with unit edges. +

Creating metric fields in PETSc

I
DMPlexMetricCreate . Isotropic metrics can be constructed
DMPlexMetricCreatelsotropic T
DMPlexMetricCreateUniform SeEbYC
DMPlexComputeGradientClementInterpolant M = &l.

DMPlexMetricEnforceSPD
DMPlexMetricSetMinimumMagnitude
DMPlexMetricSetMaximumMagnitude Is to use the Hessian of a field of
DMPlexMetricSetMaximumAnisotropy interest, u:
DMPlexMetricSetTargetComplexity

DMPlexMetricSetNormalizationOrder

DMPlexMetricNormalize H(u) = VAVT,
DMPlexMetricSetGradationFactor

DMPlexMetricSetHausdorffNumber

There are bounds on the interpolation

DMPlexMetricAverage error in u involving the Hessian.
DMPlexMetricIntersection

Il

A common choice of anisotropic metric

-t

Processing metric fields in PETSc

DMPlexMetricCreate
DMPlexMetricCreatelsotropic
DMPlexMetricCreateUniform
DMPlexComputeGradientClementInterpolant

DMPlexMetricEnforceSPD
DMPlexMetricSetMinimumMagnitude
DMPlexMetricSetMaximumMagnitude
DMPlexMetricSetMaximumAnisotropy
DMPlexMetricSetTargetComplexity
DMPlexMetricSetNormalizationOrder
DMPlexMetricNormalize
DMPlexMetricSetGradationFactor
DMPlexMetricSetHausdorffNumber

DMPlexMetricAverage
DMPlexMetricIntersection

To make sure we have a metric,
Hessians should be made SPD:

H| = V|A|V".

We can (approximately) enforce
minimum/maximum element sizes by
modifying A.

It is usually a good idea to normalise
the metric, too.

Il

Combining metric fields in PETSc

DMPlexMetricCreate
DMPlexMetricCreatelsotropic
DMPlexMetricCreateUniform
DMPlexComputeGradientClementInterpolant

DMPlexMetricEnforceSPD
DMPlexMetricSetMinimumMagnitude
DMPlexMetricSetMaximumMagnitude
DMPlexMetricSetMaximumAnisotropy
DMPlexMetricSetTargetComplexity
DMPlexMetricSetNormalizationOrder
DMPlexMetricNormalize
DMPlexMetricSetGradationFactor
DMPlexMetricSetHausdorffNumber

DMPlexMetricAverage
DMPlexMetricIntersection

Often there are multiple metrics that
we want to take account of.

Metric averaging: mathematically

simple, but not geometrically intuitive.

Metric intersection: geometrically
intuitive, but not mathematically
simple.

Il

Using metric utilities in petsc4py

DMPlexMetricCreate
DMPlexMetricCreatelsotropic
DMPlexMetricCreateUniform
DMPlexComputeGradientClementInterpolant

DMPlexMetricEnforceSPD
DMPlexMetricSetMinimumMagnitude
DMPlexMetricSetMaximumMagnitude
DMPlexMetricSetMaximumAnisotropy
DMPlexMetricSetTargetComplexity
DMPlexMetricSetNormalizationOrder
DMPlexMetricNormalize
DMPlexMetricSetGradationFactor
DMPlexMetricSetHausdorffNumber

I DMPlexMetricAverage
DMPlexMetricIntersection

plex.
plex.
plex.
plex.

plex.
plex.
plex.
plex.
plex.
plex.
plex.
plex.
plex.

plex.
plex.

Il

metricCreate
metricCreateIsotropic
metricCreateUniform
computeGradientClementInterpolant

metricEnforceSPD
metricSetMinimumMagnitude
metricSetMaximumMagnitude
metricSetMaximumAnisotropy
metricSetTargetComplexity
metricSetNormalizationOrder
metricNormalize
metricSetGradationFactor
metricSetHausdorffNumber

metricAverage
metricIntersection

Metric fields in Firedrake

&

set_parameters(self, **kwargs):

Proposed implementation gathers RiemannianMetric(Metric):
petsc4py metric utilities in a
Riemannian metric class.

enforce_spd(self, **kwargs):
The underlying field data can be
accessed and modified on either the normalise(self, **kwargs):
Firedrake level (Function) or PETSc

level (Vec). average(self, *metrics):

intersect(self, *metrics):

-t

Poisson test case in PETSc

|
Consider the Poisson problem
Au=f

on the unit cube with Dirichlet
conditions.

L? error

We can manufacture an analytical

! -\\.‘ !

oo ket S solution by choosing f appropriately.

—— k=1 (Hessian)

104 10° 109
Element count

Example 1: u(x,y,z) = g(x2 + y2 + z2).

-t

1
Ax = (element count) 3

Poisson test case in PETSc

Consider the Poisson problem
Au=f

on the unit cube with Dirichlet
conditions.

L? error

We can manufacture an analytical
solution by choosing f appropriately.

T 10°
Element count

uniform) —%— k =1 (Hessian)

uniform) k =2 (Hessian) Example 2: (SmOOthed) Spherical
i e b= indicator function.

k=1
k=2
k

3
.

-t

1
Ax = (element count) 3

Poisson test case in Firedrake

lf—_ﬁég:
£ / :_:
7 n 8..__

|)
NP

Vg vamCy

10~ 3t

Fl_ -

S |

o \M\ l

o N

l--?l _ I | | N .
10~ fi=ts R NS

‘.' . m \\
TR
Element count

¢.¢ k = 1 {(uniform) \
== k=1 (Hessian) |}
108 10> 106
Element count

=X+ k=1 (uniform) —>— k = 1 (Hessian)
4 k=2 (uniform) —#&— k = 2 (Hessian)
I @+ k=3 (uniform) —8— k = 3 (Hessian)

1
Ax =~ (element count) 3

Parallel mesh-to-mesh interpolation

PETSc’s mesh-to-mesh interpolation functionality does not currently work in
parallel. Firedrake is similarly limited.

—)

I Source mesh Target mesh

Parallel mesh-to-mesh interpolation

PETSc’s mesh-to-mesh interpolation functionality does not currently work in
parallel. Firedrake is similarly limited.

—)

I Source mesh Target mesh

Parallel mesh-to-mesh interpolation

PETSc’s mesh-to-mesh interpolation functionality does not currently work in
parallel. Firedrake is similarly limited.

—)

I Source mesh Target mesh

Parallel mesh-to-mesh interpolation

PETSc’s mesh-to-mesh interpolation functionality does not currently work in
parallel. Firedrake is similarly limited.

Scatter

—)

Scatter

I Source mesh Target mesh

1. Metric-based mesh adaptation:
Summary of achievements

— Coupled Mmg and ParMmg mesh adaptation tools to PETSc.

— Implemented routines for creating, modifying and combining Riemannian
metrics in PETSc, plus Python bindings.

— Added new PETSc tests and tutorials.
— Open pull request for piping functionality from PETSc to Firedrake.

— Proposed RiemannianMetric class.

— Basic tests of functionality.

— Open merge request for parallel mesh-to-mesh interpolation in PETSc.

— Basic tests of functionality.

2. Goal-oriented
error estimation and
mesh adaptation
using Pyroteus

Goal-oriented error estimation

Variational form:
a(u,v) = L(v), Vv eV.

Weak form:
a(uy,v) = L(v), VeV, cV.

Weak residual:
p(up,v) = L(v) — aluy,v), vEYV.

Goal-oriented error estimation

Variational form:
a(u,v) = L(v), Vv eV.

Weak form:
a(uy,v) = L(v), VeV, cV.
Weak residual:
p(up,v) = L(v) — a(up, v), vel.
Adjoint in variational form:
a(v,u*) =J(v), Vv eV.

Adjoint weak form:
a(v,uy) =J(), Vv € V).

Goal-oriented error estimation

Variational form:
a(u,v) = L(v), Vv eV.

Weak form:
a(uy,v) = L(v), VeV, cV.
Weak residual:
p(up,v) = L(v) — a(up, v), vel.
Adjoint in variational form:
a(v,u*) =J(v), Vv eV.

Adjoint weak form:
a(v,uy) =J(), Vv € V).

Dual weighted residual:

Ju) —J(up) = p(up, u*).

Goal-oriented error estimation

Main difficulties:
— The true adjoint solution is generally unknown.

— We need to approximate it, e.g. by solving the adjoint problem again in an
enriched finite element space.

— For time-dependent problems, we need to be able to solve both forward and
adjoint problems across sequences of meshes.

X/ solve solve 7\
1 forward adjoint
t=t
XI solve caliie 7\
5 forward adjoint

& solve solve 7\
3 forward] | adjoint

Pyroteus goal-oriented error estimation toolkit

To tackle the time-dependent adaptation problem, we make use of a “mesh
sequence”, MeshSeq. The user just needs to provide:

TimePartition object
list of meshes

get_function_spaces(mesh)
get_form(mesh_seq)
get_solver(mesh_seq)

get_initial_condition(mesh_seq)

2. Goal-oriented error estimation and mesh adaptation
using Pyroteus: Summary of achievements —

Provided this information and a get_goi(mesh_seq) function, the
GoalOrientedMeshSeq subclass allows us to:

— Solve the forward problem over all meshes.

— Solve the adjoint problem over all meshes.

— Solve the adjoint problem over all “enriched” meshes.

— Compute goal-oriented error estimators based on this information.

— Perform goal-oriented mesh adaptation in a “fixed point iteration” type
approach.

3. Applications and
documentation

2D steady-state tracer transport test case

“Anisotropic DWR”

VI,

|

THETIS
Consider the advection-diffusion problem

u-Ve—-V-(DVc) = f, c € P1

“Weighted gradient”

in a rectangular domain, where f is a

point source. Qol: tracer concentration ¢
in “receiver region”.

0 10

20 30 40 50
10
5
0
. | .
0.0 05 1.0 1.5 20 25 3.0
0 10 20

30 40) o0

2D steady-state tracer transport test case

— Analytical

e

[sotropic DWR

-=%- Anisotropic DWR

==== Uniform
—--+- Hessian-based
0.20 ‘H“
E \‘\'I.:\'*‘h
;:' 'il"., Hh"m Jlf-,,_‘__
= 0.151 L
-
= i
= !
= i
= (.104 ;
& ;
— jr
& ;
I
103 10 10° 106

DoF count

0.100
£0.075
”f 0.050
E 0.025
o
0.000

--+- Weighted Hessian

--»-- Weighted gradient

il g = = T

..,.1,.{.)._1 e
DoF count

106

“Anisotropic DWR”

AN D 4

“Weighted Hessian”

3D steady-state tracer transport test case

VI,

THETIS

Consider the same advection-diffusion
problem
u-Ve—-V-(DVc) = f,

but extended to 3D in a cuboid domain.
Again, Qol: tracer concentration c¢ in
“receiver region”.

v of Interest

antit

Qu

0.0004 1

= 0.0012]
0.0010-
10,0008
 0.0006

/ ~
.'” A
A Y
e \ — =
Y S _;‘:*;w-—“
- _ ’f
-
el f
]
! ;'
! ’
1 '
! /
/ !
h F{
4
10* 10°
DoF count

o

— —

— —

-l =

c € P1,

[sotropic DWR

Anisotropic DWR
Weighted Hessian
Weighted gradient

2D time-dependent desalination test case @*

|- Time-dependent advection-diffusion,

ds
|- E+u-Vs—V-(DVS)=f, s € P1.

Qol: salinity s at inlet pipe.

“Outlet pipe”

(@) 1=0s “Inlet pipe”

(b) 1 = 0.5 Tyige (¢) t = 1.5 Thige

(d)t = Tlidc (e)t =2 T,;dt.

2D time-dependent desalination test case

t/Tiide Elements Vertices Mean AR Max. AR

0.0 2,482 1,180 1.2 1.6
0.5 10,598 5,346 1.3 1.7
1.0 12,500 6,304 1.2 1.7
1.5 12,104 6,099 1.3 3.0
2.0 2,278 1,180 1.3 3.0

(b) 1 = 0.5 Tige (c) t = 1.5 Tige

(d) 1 = Tiige (e) t = 2 Tiige

2D time-dependent desalination test case

(a)r=0s

(b) t = 0.5 Tige

(d) 1= Tige

]
t/Tiide Elements Vertices Mean AR Max. AR
0.0 5,792 2,942 2.2 5.8
0.5 11,556 5,862 2.9 23.5
1.0 12,555 6,365 2.3 13.0
1.5 10,231 5,191 2.3 18.9
2.0 4,931 2,515 1.7 54

()t = 1.5 Tiide

(e) t=2 Tiide

N

]

S\

HETIS

2D time-dependent desalination test case

t/Tiide Elements Vertices Mean AR Max. AR

0.0 2,426 1,254 2.7 11.3
0.5 12,473 6,280 1.8 11.1
1.0 12,243 6,169 2.1 14.0
1.5 13,523 6.809 2.0 17.7
2.0 2,708 1,395 1.5 3.3

(a)r=0s

(b) t = 0.5 Tyige ()t = 1.5Tge

(d) 1 = Thige (e) 1t =2Tge

2D time-dependent desalination test case

(a)r=0s

(b) t = 0.5 Tyige

|
t/Tiide Elements Vertices Mean AR Max. AR
0.0 4,794 2,438 1.8 4.8
0.5 13,755 6,947 2.1 19.8
1.0 10,826 5,474 1.8 7.0
1.5 11,560 5,839 1.8 134
2.0 4,077 2,081 1.6 3.7

()t =1.5Tqe

+ E s

(d) t = Tyge

(€)1t =2Tge

N

S\

]

HETIS

2D time-dependent tidal farm test case

5001

Aligned 1 Column 1
= 950 [1 Column 2
Z ' ' ' Column 3
% 0 ' ' ' Column 4
‘g v : [1 Column b
; —2501 [1 Zoom region
I troestip
—500 . ‘ — T
—1500 —1000 —500 0 500 1000 1500

500 —
- Staggered * Nonlinear shallow water equations.
i 2501) , Solved for velocity and free surface
*_% ! . elevation.
ij 0 | ,
é o5 ' | * Qol: energy output of tidal farm.
=N

=00 * Plp; — Plp; spatial discretisation with

+ S TZ15000 —1000 —500 0 500 1000 1500 Roe fluxes, interior penalty method and
z-coordinate [m] Lax-Friedrichs stabilisation.

* Crank-Nicolson timestepping.

)///r

THETIS

Velocity Magnitude [my/s)

1 15 2 25 3 35 40
__‘ 4 L —

2D time- dependent tidal farm test case @“

Isotropic adaptation

t = Tiige 16,553 elements 148,977 DoF's max. aspect ratio 2.2 -] l’iligne d
o L e] M Staggered

()]
=
=

]

t =1.125Tiqe 47 392 elements 426 528 DoFs max. aspect ratio 2.3

]

(]

[’

=
|

DoF count (x10%)
=
S

: i 49,52 elemts :146,058 DoFs max. aspect ratio 2.4 10000 1 125 1250 1375 1500
s Time/T};ige

b= 1 375 Tt,de 8,307 elements 74 763 DoFs max. aspect ratio 2.1

./

=13 5Tt.de 8. 282 elements 74 538 DoFs max. aspect ratio 2.4

2D time-dependent tidal farm test case

Velocity Magnitude (m/s)
15 2 25 35 40

|f,

4 !

LA
o N N w
LR

/ A Y.

DoF count (x10?)

t=1.125Tiqe 27,772 elements 249,948 DoFs max. aspect ratio 10.4

3

211,527 DoFs max. aspect ratio 21.8

t =1.375Tiqge 27.475 elements 247,275 DoFs max. aspect ratio 26.2

A
; % v

t =1.5Tqe 13,482 elements 121,338 DoFs max. aspect ratio 5.8

W
=
S

Anisotropic adaptation

&

1 Aligned

| Staggered |

D
o=
-]

)
=
o

i

1(.)000

1.125

1.250 1.375
Time/Tiige

1.500

)///r

THETIS

2D time-dependent tidal farm test case

— 1 — 2 3 1

o

15 15
o Aligned Staggered
E (uniform) |\l (uniform)
=101 10 Configuration Run ct C? c3 c4 co F
B Uniform mesh 275 0.82 176 127 148 807
5 | - | Aligned Isotropic 2.73 0.79 1.39 1.52 1.52 7.93
g ° Anisotropic 2.72 0.80 1.51 1.58 1.46 8.07
z 4 Uniform mesh 3.07 3.61 2.49 2.47 2.98 14.62
15 15 o Staggered Isotropic 3.06 3.54 2.23 2.19 2.30 13.33
— Aligned |?m , Staggered Anisotropic 3.06 3.57 2.27 2.15 2.25 13.30
E (1sotropic) (isotropic)
ﬁ‘] .
= 107 107 Energy output comparison
= 51 51
é Configuration Run ct C? c3 ct Co F
i === o — Iso. — Fixed -09% -4.1% -21.1% 197% 2.9% -1.7%
’ Alienid | E— Aligned Aniso. — Fixed -1.2% -2.1% -13.9% 24.5% -1.1% -0.0%
(anisotropic)

(anisotropic) Iso. — Aniso. 0.3% -2.0% -7.3% -4.8% 4.0% -1.7%

& l Iso. — Fixed -0.2% -1.8% -10.7% -11.3% -22.6% -8.8%
Staggered Aniso. — Fixed -0.1% -1.0% -9.1% -13.2% -24.5% -9.0%
51 51 Iso. — Aniso. -0.1% -0.8% -1.6% 2.0% 2.0% 0.2%

Power output [MW]

AN Relative differences in energy output

1.000 1.125 1.250 1.375 1.500 1.000 1.125 1.250 1.375 1.500
Time/T}ige Time/T}ide

2D time-dependent tidal farm test case

—_1 — 2 3 4 5

15 15
= Aligned Staggered
EE (uniform) \l (uniform)
= 101 10 Configuration Run ct C? c3 c4 co F
B Uniform mesh 275 082 176 1.27 148 8.07
5 | 5| Aligned Isotropic 2.73 0.79 1.39 1.52 1.52 7.93
<) Anisotropic 2.72 0.80 1.51 1.58 1.46 8.07
& TN A Uniform mesh ~ 3.07 3.61 249 247 298 14.62

15 15 i Staggered Isotropic 3.06 3.54 2.23 2.19 2.30 13.33

Staggered Anisotropic 3.06 3.57 2.27 2.15 2.25 13.30

\ (isotropic)

Aligned
(isotropic)

Energy output comparison

Power output [MW]

N
Configuration Run ct C? c3 ct Co F
Vi ey N i (P
15 15 — Iso. — Fixed [-0.9%| -4.1% -211% 197% 2.9% [-1.7%
Aligned AL\ Staggered Aligned Aniso. — Fixed |[-1.2%| |-2.1%| -13.9% 24.5% |[-1.1%| [-0.0%
(anisotropic) (‘::{' (anisotropic) Iso. — Aniso. 0.3% -2.0% -7.3% -4.8% 4.0% “1.7%

101 101
Iso. — Fixed -0.2%| |-1.8%] -10.7% -11.3% -22.6% -8.8%
Staggered Aniso. — Fixed |[-0.1%| |-1.0% -9.1% -13.2% -24.5% -9.0%
5 5. Iso. — Aniso. |-0.1%| [-0.8%]| [-1.6%| [2.0%| |2.0%| | 0.2%]

Power output [MW]

~— N Relative differences in energy output

1.000 1.125 1.250 1.375 1.500 1.000 1.125 1.250 1.375 1.500
Time/T}ige Time/T}ide

=PETSc L,TAO

Overview Download Installation FAQ Documentation Tutorials Community Developers Misc. {\'D/} w

Metric-based mesh adaptation

DMPlex supports mesh adaptation using the Riemmanian metric framework. The idea is to use a
Riemannian metric space within the mesher. The metric space dictates how mesh resolution
should be distributed across the domain. Using this information, the remesher transforms the
mesh such that it is a unit mesh when viewed in the metric space. That is, the image of each of
its elements under the mapping from Euclidean space into the metric space has edges of unit

length.

One of the main advantages of metric-based mesh adaptation is that it allows for fully
anisotropic remeshing. That is, it provides a means of controlling the shape and orientation of
elements in the adapted mesh, as well as their size. This can be particularly useful for advection-

dominated and directionally-dependent problems.
See [Ala10] for further details on metric-based anisotropic mesh adaptation.

The two main ingredients for metric-based mesh adaptation are an input mesh (i.e. the DMPlex)
and a Riemannian metric. The implementation in PETSc assumes that the metric is piecewise

linear and continuous across elemental boundaries. Such an object can be created using the

routine

DMPlexMetricCreate(DM dm, PetscInt f, Vec *metric);

A metric must be symmetric positive-definite, so that distances may be properly defined. This

petsc.org

https://petsc.org/release/docs/manual/

Accessing the PETSc mesh representation

Under the hood, Firedrake uses PETSc's DMPlex unstructured mesh representation. It uses a hierarchical approach, where entities of different
dimension are put on different levels of the hierarchy. The single tetrahedral element shown on the left below may be interpreted using the graph
representation on the right. Entities of dimension zero (vertices) are shown at the top. Entities of dimension one (edges) are shown on the next
level down. Entities of dimension two (faces) are shown on the penultimate level and the (dimension three) element itself is on the hottom level.
Edges in the graph indicate which entities own/are owned by others.

The DMPlex associated with a given mesh may be accessed via its topology dm attribute:

plex = mesh.topology dm

All entities in a DMPlex are given a unigue number. The range of these numbers may be deduced using the method plex. getDepthstratum,
whose only argument is the entity dimension sought. For example, 0 for vertices, 1 for edges, etc. Similarly, the method
plex.getHeightStratum can be used for codimension access. For example, height 0 corresponds to cells. The hierarchical DMPlex structure
may be traversed using other methods, such as plex.getCone, plex.getSupport and plex.getTransitiveClosure. See the Firedrake
DMPlex paper and the PETSc manual for details.

If vertex coordinate information is to be accessed from the DMPlex then we must first establish a mapping between its numbering and the coordi-
nates in the Firedrake mesh. This is done by establishing a ‘section’. A section provides a way of associating data with the mesh - in this case,

firedrakeproject.org

https://firedrakeproject.org/

Pyroteus 0.1 documentation » Pyroteus Goal-Oriented Mesh Adaptation Toolkit

Next topic
Pyroteus manual

This Page
Show Source

Quick search

Go

Pyroteus Goal-Oriented Mesh Adaptation Toolkit

Pyroteus provides metric-based goal-oriented mesh adaptation functionality to the Python-based finite element library
Firedrake. The ‘y’ is silent, so its pronunciation is identical to ‘Proteus’ - the ancient Greek god of the constantly changing sur-
face of the sea.

Mathematical background

Goal-oriented mesh adaptation presents one of the clearest examples of the intersection between adjoint methods and mesh
adaptation. It is an advanced topic, so it is highly recommended that users are familiar with adjoint methods, mesh adaptation
and the goal-oriented framework before starting with Pyroteus.

We refer to the Firedrake documentation for an introduction to the finite element method - the discretisation approach as-
sumed throughout. The dolfin-adjoint package (which Pyroteus uses to solve adjoint problems) contains some excellent docu-
mentation on the mathematical background of adjoint problems. The goal-oriented error estimation and metric-based mesh
adaptation functionalities provided by Pyroteus are described in the manual.

¢ Pyroteus manual
o 1. Motivation
o 2. Goal-oriented error estimation
o 3. The metric-based framework
o 4. Goal-oriented mesh adaptation

API| documentation

pyroteus.github.io

The classes and functions which comprise Pyroteus may be found in the APl documentation.

https://pyroteus.github.io/

3. Applications and documentation:
Summary of achievements

— Tested functionality in two research papers.
— Metric-based mesh adaptation section in the PETSc manual.
— Extension of existing Firedrake documentation.

— Created a webpage for Pyroteus: pyroteus.github.io, including plenty of
documentation and demos.

https://pyroteus.github.io/

Papers

About eCSE work

— JGW, M. G. Knepley, N. Barral, M. D. Piggott, Parallel metric-based mesh adaptation in
PETSc using ParMmg, 30" International Meshing Roundtable (2022),
doi:10.48550/arXiv.2201.02806.

— JGW, A. K. Mohan, M. D. Piggott, Pyroteus Goal-Oriented Error Estimation Toolkit, 315
International Meshing Roundtable (in preparation).

Using eCSE work

— JGW, N. Barral, D. A. Ham, M. D. Piggott, Goal-oriented error estimation and mesh
adaptation for tracer transport modelling, Computer-Aided Design 145 (2022): 103187,
doi:10.1016/j.cad.2021.103187

— JGW, A. Angeloudis, N. Barral, L. Mackie, S. C. Kramer, M. D. Piggott, Tidal array
modelling using goal-oriented mesh adaptation, Journal of Ocean Engineering and
Marine Energy (under review), doi:10.31223/X5H06B.

https://doi.org/10.48550/arXiv.2201.02806
https://doi.org/10.1016/j.cad.2021.103187
https://doi.org/10.31223/X5H06B

Thanks for listening!

