
Goal-oriented
mesh adaptation
for Firedrake
PI: Matt Piggott

Technical staff: Joe Wallwork

Main objectives

1. Extend PETSc’s metric-based mesh
adaptation functionality.

2. Pipe PETSc’s mesh adaptation
functionality through to Firedrake.

3. Develop a new goal-oriented error
estimation and mesh adaptation
module, Pyroteus.

4. Applications and documentation.

PETSc

Firedrake

Pyroteus

Mmg
Metric-based mesh adaptation

package. Written in C.

Solver library (amongst much

more!). Written in C.

Finite element library. Written

in Python, with automatic C

code generation.

Goal-oriented error estimation

module. Written in Python.

Main objectives

1. Extend PETSc’s metric-based mesh
adaptation functionality.

2. Pipe PETSc’s mesh adaptation
functionality through to Firedrake.

3. Develop a new goal-oriented error
estimation and mesh adaptation
module, Pyroteus.

4. Applications and documentation.

PETSc

Firedrake

Pyroteus

Mmg
Metric-based mesh adaptation

package. Written in C.

Solver library (amongst much

more!). Written in C.

Finite element library. Written

in Python, with automatic C

code generation.

Goal-oriented error estimation

module. Written in Python.

Main objectives

1. Extend PETSc’s metric-based mesh
adaptation functionality.

2. Pipe PETSc’s mesh adaptation
functionality through to Firedrake.

3. Develop a new goal-oriented error
estimation and mesh adaptation
module, Pyroteus.

4. Applications and documentation.

PETSc

Firedrake

Pyroteus

Mmg
Metric-based mesh adaptation

package. Written in C.

Solver library (amongst much

more!). Written in C.

Finite element library. Written

in Python, with automatic C

code generation.

Goal-oriented error estimation

module. Written in Python.

Main objectives

1. Extend PETSc’s metric-based mesh
adaptation functionality.

2. Pipe PETSc’s mesh adaptation
functionality through to Firedrake.

3. Develop a new goal-oriented error
estimation and mesh adaptation
module, Pyroteus.

4. Applications and documentation.

PETSc

Firedrake

Pyroteus

Mmg
Metric-based mesh adaptation

package. Written in C.

Solver library (amongst much

more!). Written in C.

Finite element library. Written

in Python, with automatic C

code generation.

Goal-oriented error estimation

module. Written in Python.

1. Metric-based
mesh adaptation in
PETSc and Firedrake

Riemannian metric fields
An 𝑛𝐷 Riemannian metric, ℳ = {𝑴 𝒙 }𝒙∈Ω,

takes the value of an 𝑛 × 𝑛 symmetric

positive-definite (SPD) matrix at each point.

The space-time of general relativity

Riemannian metric fields
An 𝑛𝐷 Riemannian metric, ℳ = {𝑴 𝒙 }𝒙∈Ω,
takes the value of an 𝑛 × 𝑛 symmetric
positive-definite (SPD) matrix at each point.

Symmetry implies
𝑴 𝒙 = 𝑽 𝒙 𝚲 𝒙 𝑽𝑇 𝒙 ,

where

𝚲 𝒙 = diag 𝜆1 𝒙 ,… , 𝜆𝑛 𝒙 ,

𝑽 𝒙 = 𝒗1 𝒙 … 𝒗𝑛 𝒙 .

Positive-definiteness implies

𝜆𝑖 > 0, ∀𝑖 = 1: 𝑛.

Define ℎ𝑖 ≔ ൗ
1

𝜆𝑖
, ∀𝑖 = 1: 𝑛.

Riemannian metric fields
An 𝑛𝐷 Riemannian metric, ℳ = {𝑴 𝒙 }𝒙∈Ω,
takes the value of an 𝑛 × 𝑛 symmetric
positive-definite (SPD) matrix at each point.

Symmetry implies
𝑴 𝒙 = 𝑽 𝒙 𝚲 𝒙 𝑽𝑇 𝒙 ,

where

𝚲 𝒙 = diag 𝜆1 𝒙 ,… , 𝜆𝑛 𝒙 ,

𝑽 𝒙 = 𝒗1 𝒙 … 𝒗𝑛 𝒙 .

Positive-definiteness implies

𝜆𝑖 > 0, ∀𝑖 = 1: 𝑛.

Define ℎ𝑖 ≔ ൗ
1

𝜆𝑖
, ∀𝑖 = 1: 𝑛.

2D metric-based mesh adaptation

Minimise a quality function,

𝑄ℳ 𝐾 =
3

2

σ𝛾∈𝜕𝐾 ℓℳ 𝛾 2

𝐾 ℳ

for each mesh element 𝐾, by applying

mesh modification operations.

Here 𝑄ℳ 𝐾 is minimised if 𝐾 is an

equilateral triangle with unit edges.

3D metric-based mesh adaptation

Minimise a quality function,

𝑄ℳ 𝐾 =
3

216

(σ𝛾∈𝜕𝐾 ℓℳ 𝛾 2)
3
2

𝐾 ℳ

for each mesh element 𝐾, by applying

mesh modification operations.

Here 𝑄ℳ 𝐾 is minimised if 𝐾 is a

regular tetrahedron with unit edges.

Creating metric fields in PETSc

Isotropic metrics can be constructed

easily:

ℳ = 𝜀𝑰.

A common choice of anisotropic metric

is to use the Hessian of a field of

interest, 𝑢:

𝑯 𝑢 = 𝑽𝚲𝑽𝑻.

There are bounds on the interpolation

error in 𝑢 involving the Hessian.

DMPlexMetricCreate
DMPlexMetricCreateIsotropic
DMPlexMetricCreateUniform
DMPlexComputeGradientClementInterpolant

DMPlexMetricEnforceSPD
DMPlexMetricSetMinimumMagnitude
DMPlexMetricSetMaximumMagnitude
DMPlexMetricSetMaximumAnisotropy
DMPlexMetricSetTargetComplexity
DMPlexMetricSetNormalizationOrder
DMPlexMetricNormalize
DMPlexMetricSetGradationFactor
DMPlexMetricSetHausdorffNumber

DMPlexMetricAverage
DMPlexMetricIntersection

Processing metric fields in PETSc
DMPlexMetricCreate
DMPlexMetricCreateIsotropic
DMPlexMetricCreateUniform
DMPlexComputeGradientClementInterpolant

DMPlexMetricEnforceSPD
DMPlexMetricSetMinimumMagnitude
DMPlexMetricSetMaximumMagnitude
DMPlexMetricSetMaximumAnisotropy
DMPlexMetricSetTargetComplexity
DMPlexMetricSetNormalizationOrder
DMPlexMetricNormalize
DMPlexMetricSetGradationFactor
DMPlexMetricSetHausdorffNumber

DMPlexMetricAverage
DMPlexMetricIntersection

To make sure we have a metric,

Hessians should be made SPD:

|𝑯| = 𝑽 𝚲 𝑽𝑻.

We can (approximately) enforce

minimum/maximum element sizes by

modifying 𝚲.

It is usually a good idea to normalise

the metric, too.

Combining metric fields in PETSc

Often there are multiple metrics that

we want to take account of.

Metric averaging: mathematically

simple, but not geometrically intuitive.

Metric intersection: geometrically

intuitive, but not mathematically

simple.

DMPlexMetricCreate
DMPlexMetricCreateIsotropic
DMPlexMetricCreateUniform
DMPlexComputeGradientClementInterpolant

DMPlexMetricEnforceSPD
DMPlexMetricSetMinimumMagnitude
DMPlexMetricSetMaximumMagnitude
DMPlexMetricSetMaximumAnisotropy
DMPlexMetricSetTargetComplexity
DMPlexMetricSetNormalizationOrder
DMPlexMetricNormalize
DMPlexMetricSetGradationFactor
DMPlexMetricSetHausdorffNumber

DMPlexMetricAverage
DMPlexMetricIntersection

DMPlexMetricCreate
DMPlexMetricCreateIsotropic
DMPlexMetricCreateUniform
DMPlexComputeGradientClementInterpolant

DMPlexMetricEnforceSPD
DMPlexMetricSetMinimumMagnitude
DMPlexMetricSetMaximumMagnitude
DMPlexMetricSetMaximumAnisotropy
DMPlexMetricSetTargetComplexity
DMPlexMetricSetNormalizationOrder
DMPlexMetricNormalize
DMPlexMetricSetGradationFactor
DMPlexMetricSetHausdorffNumber

DMPlexMetricAverage
DMPlexMetricIntersection

plex.metricCreate
plex.metricCreateIsotropic
plex.metricCreateUniform
plex.computeGradientClementInterpolant

plex.metricEnforceSPD
plex.metricSetMinimumMagnitude
plex.metricSetMaximumMagnitude
plex.metricSetMaximumAnisotropy
plex.metricSetTargetComplexity
plex.metricSetNormalizationOrder
plex.metricNormalize
plex.metricSetGradationFactor
plex.metricSetHausdorffNumber

plex.metricAverage
plex.metricIntersection

Using metric utilities in petsc4py

class RiemannianMetric(Metric):

def set_parameters(self, **kwargs):
…

def enforce_spd(self, **kwargs):
…

def normalise(self, **kwargs):
…

def average(self, *metrics):
…

def intersect(self, *metrics):
…

…

Proposed implementation gathers

petsc4py metric utilities in a

Riemannian metric class.

The underlying field data can be

accessed and modified on either the

Firedrake level (Function) or PETSc

level (Vec).

Metric fields in Firedrake

Poisson test case in PETSc

Consider the Poisson problem

Δ𝑢 = 𝑓

on the unit cube with Dirichlet

conditions.

We can manufacture an analytical

solution by choosing 𝑓 appropriately.

Example 1: 𝑢 𝑥, 𝑦, 𝑧 =
4

3
𝑥2 + 𝑦2 + 𝑧2 .

Δ𝑥 ≈ (element count)−
1
3

Poisson test case in PETSc

Consider the Poisson problem

Δ𝑢 = 𝑓

on the unit cube with Dirichlet

conditions.

We can manufacture an analytical

solution by choosing 𝑓 appropriately.

Example 2: (smoothed) spherical

indicator function.

Δ𝑥 ≈ (element count)−
1
3

Δ𝑥 ≈ (element count)−
1
3

Poisson test case in Firedrake

PETSc’s mesh-to-mesh interpolation functionality does not currently work in

parallel. Firedrake is similarly limited.

Source mesh Target mesh

0 0

1 1

Parallel mesh-to-mesh interpolation

PETSc’s mesh-to-mesh interpolation functionality does not currently work in

parallel. Firedrake is similarly limited.

Source mesh Target mesh

0 0

1 1

Parallel mesh-to-mesh interpolation

PETSc’s mesh-to-mesh interpolation functionality does not currently work in

parallel. Firedrake is similarly limited.

Source mesh Target mesh

0 0

1 1

Parallel mesh-to-mesh interpolation

PETSc’s mesh-to-mesh interpolation functionality does not currently work in

parallel. Firedrake is similarly limited.

Source mesh Target mesh

0 0

1 1

Scatter

Scatter

Parallel mesh-to-mesh interpolation

1. Metric-based mesh adaptation:
Summary of achievements

– Coupled Mmg and ParMmg mesh adaptation tools to PETSc.

– Implemented routines for creating, modifying and combining Riemannian

metrics in PETSc, plus Python bindings.

– Added new PETSc tests and tutorials.

– Open pull request for piping functionality from PETSc to Firedrake.

– Proposed RiemannianMetric class.

– Basic tests of functionality.

– Open merge request for parallel mesh-to-mesh interpolation in PETSc.

– Basic tests of functionality.

2. Goal-oriented
error estimation and
mesh adaptation
using Pyroteus

Goal-oriented error estimation
Variational form:

𝑎 𝑢, 𝑣 = 𝐿 𝑣 , ∀𝑣 ∈ 𝑉.

Weak form:

𝑎 𝑢ℎ, 𝑣 = 𝐿(𝑣), ∀𝑣 ∈ 𝑉ℎ ⊂ 𝑉.

Weak residual:

ρ 𝑢ℎ, 𝑣 = 𝐿 𝑣 − 𝑎 𝑢ℎ, 𝑣 , 𝑣 ∈ 𝑉.

Goal-oriented error estimation
Variational form:

𝑎 𝑢, 𝑣 = 𝐿 𝑣 , ∀𝑣 ∈ 𝑉.

Weak form:

𝑎 𝑢ℎ, 𝑣 = 𝐿(𝑣), ∀𝑣 ∈ 𝑉ℎ ⊂ 𝑉.

Weak residual:

ρ 𝑢ℎ, 𝑣 = 𝐿 𝑣 − 𝑎 𝑢ℎ, 𝑣 , 𝑣 ∈ 𝑉.

Adjoint in variational form:

𝑎 𝑣, 𝑢∗ = 𝐽 𝑣 , ∀𝑣 ∈ 𝑉.

Adjoint weak form:

𝑎 𝑣, 𝑢ℎ
∗ = 𝐽 𝑣 , ∀𝑣 ∈ 𝑉ℎ.

Goal-oriented error estimation
Variational form:

𝑎 𝑢, 𝑣 = 𝐿 𝑣 , ∀𝑣 ∈ 𝑉.

Weak form:

𝑎 𝑢ℎ, 𝑣 = 𝐿(𝑣), ∀𝑣 ∈ 𝑉ℎ ⊂ 𝑉.

Weak residual:

ρ 𝑢ℎ, 𝑣 = 𝐿 𝑣 − 𝑎 𝑢ℎ, 𝑣 , 𝑣 ∈ 𝑉.

Adjoint in variational form:

𝑎 𝑣, 𝑢∗ = 𝐽 𝑣 , ∀𝑣 ∈ 𝑉.

Adjoint weak form:

𝑎 𝑣, 𝑢ℎ
∗ = 𝐽 𝑣 , ∀𝑣 ∈ 𝑉ℎ.

Dual weighted residual:

𝐽 𝑢 − 𝐽 𝑢ℎ ≈ ρ 𝑢ℎ, 𝑢
∗ − 𝑢ℎ

∗ .

Goal-oriented error estimation

Main difficulties:

– The true adjoint solution is generally unknown.

– We need to approximate it, e.g. by solving the adjoint problem again in an

enriched finite element space.

– For time-dependent problems, we need to be able to solve both forward and

adjoint problems across sequences of meshes.

Pyroteus goal-oriented error estimation toolkit

To tackle the time-dependent adaptation problem, we make use of a “mesh

sequence”, MeshSeq. The user just needs to provide:

TimePartition object

list of meshes

get_function_spaces(mesh)

get_form(mesh_seq)

get_solver(mesh_seq)

get_initial_condition(mesh_seq)

2. Goal-oriented error estimation and mesh adaptation
using Pyroteus: Summary of achievements

Provided this information and a get_qoi(mesh_seq) function, the

GoalOrientedMeshSeq subclass allows us to:

– Solve the forward problem over all meshes.

– Solve the adjoint problem over all meshes.

– Solve the adjoint problem over all “enriched” meshes.

– Compute goal-oriented error estimators based on this information.

– Perform goal-oriented mesh adaptation in a “fixed point iteration” type

approach.

3. Applications and
documentation

2D steady-state tracer transport test case

Consider the advection-diffusion problem

𝐮 ⋅ ∇𝑐 − ∇ ⋅ 𝐷∇𝑐 = 𝑓, 𝑐 ∈ 𝑃1

in a rectangular domain, where 𝑓 is a

point source. QoI: tracer concentration 𝑐
in “receiver region”.

“Anisotropic DWR”

“Weighted Hessian”

“Weighted gradient”

2D steady-state tracer transport test case

3D steady-state tracer transport test case

“Isotropic DWR”

“Anisotropic DWR”

“Weighted Hessian”

Consider the same advection-diffusion

problem

𝐮 ⋅ ∇𝑐 − ∇ ⋅ 𝐷∇𝑐 = 𝑓, 𝑐 ∈ 𝑃1,

but extended to 3D in a cuboid domain.

Again, QoI: tracer concentration 𝑐 in

“receiver region”.

2D time-dependent desalination test case

Time-dependent advection-diffusion,
𝜕𝑠

𝜕𝑡
+ 𝐮 ⋅ ∇𝑠 − ∇ ⋅ 𝐷∇𝑠 = 𝑓, 𝑠 ∈ 𝑃1.

QoI: salinity 𝑠 at inlet pipe.“Outlet pipe” “Inlet pipe”

2D time-dependent desalination test case

2D time-dependent desalination test case

2D time-dependent desalination test case

2D time-dependent desalination test case

2D time-dependent tidal farm test case

• Nonlinear shallow water equations.

Solved for velocity and free surface

elevation.

• QoI: energy output of tidal farm.

• 𝑃1𝐷𝐺 − 𝑃1𝐷𝐺 spatial discretisation with

Roe fluxes, interior penalty method and

Lax-Friedrichs stabilisation.

• Crank-Nicolson timestepping.

2D time-dependent tidal farm test case

2D time-dependent tidal farm test case

2D time-dependent tidal farm test case

Energy output comparison

Relative differences in energy output

2D time-dependent tidal farm test case

Energy output comparison

Relative differences in energy output

petsc.org

https://petsc.org/release/docs/manual/

firedrakeproject.org

https://firedrakeproject.org/

pyroteus.github.io

https://pyroteus.github.io/

3. Applications and documentation:
Summary of achievements

– Tested functionality in two research papers.

– Metric-based mesh adaptation section in the PETSc manual.

– Extension of existing Firedrake documentation.

– Created a webpage for Pyroteus: pyroteus.github.io, including plenty of
documentation and demos.

https://pyroteus.github.io/

Papers

About eCSE work

– JGW, M. G. Knepley, N. Barral, M. D. Piggott, Parallel metric-based mesh adaptation in

PETSc using ParMmg, 30th International Meshing Roundtable (2022),

doi:10.48550/arXiv.2201.02806.

– JGW, A. K. Mohan, M. D. Piggott, Pyroteus Goal-Oriented Error Estimation Toolkit, 31st

International Meshing Roundtable (in preparation).

Using eCSE work

– JGW, N. Barral, D. A. Ham, M. D. Piggott, Goal-oriented error estimation and mesh

adaptation for tracer transport modelling, Computer-Aided Design 145 (2022): 103187,

doi:10.1016/j.cad.2021.103187.

– JGW, A. Angeloudis, N. Barral, L. Mackie, S. C. Kramer, M. D. Piggott, Tidal array

modelling using goal-oriented mesh adaptation, Journal of Ocean Engineering and

Marine Energy (under review), doi:10.31223/X5H06B.

https://doi.org/10.48550/arXiv.2201.02806
https://doi.org/10.1016/j.cad.2021.103187
https://doi.org/10.31223/X5H06B

Thanks for listening!

