
Performance of MPI+OpenMP on
ARCHER2

Holly Judge

Reusing this material

EPCC, The University of Edinburgh 2

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.
https://creativecommons.org/licenses/by-nc-sa/4.0/

This means you are free to copy and redistribute the material and adapt and build on the material under the
following terms: You must give appropriate credit, provide a link to the license and indicate if changes were made. If

you adapt or build on the material you must distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission before reusing these
images.

https://creativecommons.org/licenses/by-nc-sa/4.0/

Partners

EPCC, The University of Edinburgh 3

Introduction

• HPC applications are typically run with MPI
• For some applications MPI+OpenMP can be used as an alternative to MPI
• This may achieve better performance than MPI – but this depends

• Using MPI+OpenMP may be good for taking advantage of the
resources on ARCHER2 nodes
• 128 cores per node
• Different to ARCHER – 24 cores per node

• When can we get good performance with MPI+OpenMP?
• Which applications?
• What sort of systems/test cases?
• How many threads?

Outline

• ARCHER2
• MPI+OpenMP overview
• How is it different to MPI?
• How can it be used on ARCHER2?

• MPI+OpenMP performance investigation on ARCHER2
• Applications investigated
• Test cases
• Results

• How can users benefit from MPI+OpenMP on ARCHER2?

ARCHER2

• UK national service used for
scientific research

• HPE EX system

• 5,860 nodes (750,080 cores)

• AMD EPYC processors

• HPE Slingshot interconnect

Node-level architecture

• Two 64 core AMD EPYC 7742
processors – 128 cores

• 256 GB of memory per standard
node

• 8 non-uniform memory access
(NUMA) regions of 16 cores

• Groups of 4 cores which share L3
cache

ARCHER2 node usage

• ARCHER2 nodes have 256 GB of memory and 128 cores
• Using one MPI process per core gives 2 GB of memory per process
• Less than ARCHER - roughly 2.6 GB per process

• This can be not enough for memory intensive applications – OOM
errors – underpopulation sometimes necessary
• Using one process per core can affect the MPI communication

performance
• Using MPI+OpenMP (less processes with multiple threads per

process) can maybe help here

MPI and MPI+OpenMP in practice

• MPI
• each core has one process (task) spawned on it

• Own distinct memory space for each process
• Communication between processes takes place via messages
• 128 cores per node on ARCHER2 --tasks-per-node=128

• OMP_NUM_THREADS = 1
• 2 GB of memory per task

• MPI+OpenMP
• Using a mixture of threads and processes spawned onto the cores

• Groups of multiple threads within a memory region
• At least one process per memory region
• Messages between processes

• Less processes mean more memory per process (shared between threads)
• Less copies of data on a node

• Less processes can mean less internode messages

EPCC, The University of Edinburgh 12

MPI+OpenMP Usage

• Implemented in many HPC
applications
• However not always more

performant than using a single
thread (e.g. pure MPI)
• Good OpenMP coverage within the

code required
• Number of threads per process to

use needs to be tuned to the use
case and the machine
• Need to be aware of the underlying

node structure when running e.g.
regions when memory is shared

MPI+OpenMP ARCHER2 usage

• Using multiple OpenMP
threads per process
• Less processes (or tasks) than

128
• Need to ensure tasks-per-
process x threads = 128
• Fully occupied nodes
• Threads not greater than 16

(size of NUMA region on
ARCHER2)

• cpus-per-task should equal
OMP_NUM_THREADS
• 1, 2, 4, 8, 16 good values for

threads on ARCHER2

EPCC, The University of Edinburgh 14

ARCHER2 PERFORMANCE INVESTIGATION
MPI+OpenMP performance of ARCHER2 applications

ARCHER2 applications usage – June 2022

• Quantum chemistry codes make up the bulk of
the most used codes in terms of node hours
used
• VASP, CP2K, CASTEP

• Classical MD codes
• LAMMPS, GROMACS

ARCHER2 applications investigated

• Well used applications
• Centrally supported by the

ARCHER2 team
• MPI+OpenMP enabled
• Different test cases for each

application for different scales
• Full results:

https://github.com/holly-
t/ARCHER2_hybrid_benchmarking
• Compare performance of using 1, 2,

4, 8 and 16 threads per MPI process

https://github.com/holly-t/ARCHER2_hybrid_benchmarking

Applications

• CASTEP - density functional theory software package for electronic structure calculations
using plane waves
• Version 20.11 - GCC version 10.2, Intel MKL 19, Cray-mpich 8.1.4, Cray-fftw 3.3.8.11
• OpenMP usage – FFTW, linear algebra libraries

• CP2K - quantum chemistry and solid state physics package – mixed plane wave/Gaussian
• Version 8.1 - GCC version 11.2, Intel MKL 19, Cray-mpich 8.1.9, Cray-fftw 3.3.8.11
• OpenMP usage - realspace to planewave transfer, collocate and integrate, FFTW, linear algebra

libraries, + more
• GROMACS – classical MD of biological systems

• Version 2021.3 - GCC version 11.2, Cray-mpich 8.1.9
• OpenMP usage – PME calculations

• LAMMPS – classical MD for materials modelling
• Jan 2022 version - GCC version 10.2, Cray-mpich 8.1.4, Cray-fftw 3.3.8.11
• OpenMP usage – pair interactions, FFTW

• Quantum ESPRESSO - electronic-structure calculations with plane waves
• Version 6.8 - GCC version 11.2, Cray-libsci 21.08.1.2, Cray-mpich 8.1.9, Cray-fftw 3.3.8.11
• OpenMP usage - space integrals, point function evaluations, 3D FFTW, linear algebra libraries

Application test cases

• CASTEP
• DNA (large memory intensive system)
• Al3x3 (smaller system)

• CP2K
• H2O-64 (small water system, LDA)
• H2O-512 (larger water)
• LiH-HFX (Hartree Fock exchange, memory intensive)

• GROMACS
• 1400k and 3000k atom MD simulations
• BenchPEP – 12m atom MD simulation

• LAMMPS
• 3000k atom MD simulation

• Quantum ESPRESSO
• GRIR (scf calculation, 4 k-points)
• CNT (single k-point, large and memory intensive system)

RESULTS
Application MPI+OpenMP results

CP2K - H2O-64 benchmark

0
5
10
15
20
25
30
35
40
45
50

1 2 3 4

Ti
m
e
(s
)

Nodes

1T
2T
4T
8T
16T

• Small system that does not
scale beyond a couple of
nodes
• Clear benefit from using

multiple threads per process
• Run time dominated by

MPI_Alltoall, which
contributes more on multiple
nodes
• Using MPI+OpenMP reduces

the run time of these
communications – message
aggregation

CP2K - H2O-512 benchmark

0
100
200
300
400
500
600
700
800
900

1 2 4 8 16 32

Ti
m
e
(s
)

Nodes

1T
2T
4T
8T
16T

• Larger version of H2O-64 benchmark
• Using multiple threads per process allows for further scaling beyond the single threaded

version
• Using 2 or 4 threads per process gives best performance due to reduction in

communications overhead

CP2K - H2O-512 benchmark

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8

Pe
rfo
rm
an
ce

(S
C
F
cy
cl
es

pe
rs
)

Nodes

2 threads (best)
1 thread

Parallel efficiency 4 nodes

1 thread per process 60%

2 threads per process 70%

CP2K – LiH-HFX benchmark

0

50

100

150

200

250

32 64 128 256

Ti
m
e
(s
)

Nodes

1T
2T
4T
8T
16T

• Hybrid Hartree-Fock exchange calculation which is memory and compute intensive
• 4 or 8 threads per process gives the best performance
• The increase in performance with multiple threads is less significant as this

calculation is dominated more by the computation of the integrals rather than
comms.

CP2K – LiH-HFX benchmark

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 50 100 150 200 250 300

Pe
rfo
rm
an
ce

(S
C
F
cy
cl
es

pe
rs
)

Nodes

8 threads (best)
1 thread

Parallel efficiency 128 nodes 256 nodes

1 thread per process 52% 19%

8 threads per process 68% 49%

CASTEP – DNA benchmark

0

0.002

0.004

0.006

0.008

0.01

0.012

32 64 128 256

Pe
rfo
rm
an
ce

(S
C
F
cy
cl
es
/s
)

Nodes

1T
2T
4T

• Large, memory intensive calculation

• On 32 and 64 nodes using a single thread per process gives the better performance than using
multiple threads

• However on 128 and 256 nodes using 2 and 4 threads respectively yields the best performance
• Again MPI collectives dominate in CASTEP

CASTEP – Al3x3 benchmark

0
100
200
300
400
500
600
700
800

1 2 4 8 16

Ti
m
e
(s
)

Nodes

1T
2T
4T
8T
16T

• Smaller system - single point energy calculation
• Using 2 or 4 threads per process gives a performance similar to the single threaded

version
• On 4 or more nodes using MPI+OpenMP improves the performance

GROMACS – 1400k and 3000k benchmarks

0
10
20
30
40
50
60
70
80

1 2 4 8 16 32Pe
rfo
rm
an
ce

(n
s/
da
y)

Nodes

1T
2T
4T
8T
16T

•MD simulations of 1400k and
3000k atoms
• Timing of PME communications

become significant at scale
• Using MPI+OpenMP can help

reduce the communications cost
at the scaling limit
• Performance not great for more

than 4 threads
• Sharing memory beyond the L3

cache
0
10
20
30
40
50
60
70

1 2 4 8 16 32 64Pe
rfo
rm
an
ce

(n
s/
da
y)

Nodes

1T
2T
4T
8T
16T

1400k

3000k

GROMACS – benchPEP benchmark

0

5

10

15

20

25

30

1 2 4 8 16 32 64Pe
rfo
rm
an
ce

(n
s/
da
y)

Nodes

1TH
2TH
4TH
8TH

29

• 12 million atom MD calculation
• For 1 – 16 nodes there is not much performance difference for 1-4 threads
• On 32 and 64 nodes 4 threads per process yields best performance
• Again with more than 4 threads the performance suffers due to cache effects

LAMMPS – 3000k atom benchmark

0
1
2
3
4
5
6
7
8
9

1 2 4 8 16 32 64 128Pe
rfo
rm
an
ce

(n
s/
da
y)

Nodes

1T
2T
4T
8T

• Using a single thread gives the best performance up to 32 nodes.
• Only on 64 and 128 nodes does using MPI+OpenMP improve the performance
• Main overhead on many nodes is writing to file (for checkpointing in LAMMPS)

which is poor on many processes – a known issue under investigation
• The performance of this improves with MPI+OpenMP as there are less processes

writing to disk

Quantum ESPRESSO – GRIR benchmark

0

500

1000

1500

2000

2500

3000

2 4 8 12

Ti
m
e
(s
)

Nodes

1TH
2TH
4TH
8TH

• On 1 node this calculation fails with an out of memory error
• On 2 nodes this fails with OOM on a single thread – not enough memory per process
• Using MPI+OpenMP does not benefit the performance of this calculation – even at

the limit of scaling

Quantum ESPRESSO – CNT benchmark

0
200
400
600
800
1000
1200
1400
1600
1800
2000

4 8 16

Ti
m
e
(s
)

Nodes

1TH
2TH
4TH
8TH
16TH

• This test case has very high memory
requirements
• Using MPI+OpenMP can prevent OOM

errors
• MPI+OpenMP also increases the

memory per process, which improves
the performance for this system on 8
and 16 nodes
• Underpopulation alone also improves

the performance
Test case run time on 8 nodes

Summary

• Quantum chemistry codes CP2K and CASTEP are able to benefit from
using MPI+OpenMP in general
• The run time of these codes are dominated by MPI collective calls
• MPI+OpenMP reduces the communication overhead

• MPI+OpenMP is useful for Quantum ESPRESSO as it allows more
memory per process
• Calculations can be memory intensive and may require underpopulation to

run

• The classical MD codes GROMACS and LAMMPS generally do not
benefit much from MPI+OpenMP
• It can improve the performance, but only at the scaling limit

BENEFITING FROM MPI+OpenMP

34

How can users benefit?

• Check if your application is MPI+OpenMP enabled
• Performance
• Applications and test cases where MPI collective communications dominate

the run time may benefit from MPI+OpenMP
• The overhead of MPI communications is reduced as there are less messages

between processes
• At the scaling limit performance can be improved

• Out of memory errors
• If you have a memory intensive calculation which runs out of memory
• Requires underpopulation of processes on the node (task-per-node=64)
• MPI+OpenMP allows more memory per process similar to underpopulation
• But, using threads as well may give a performance benefit

35

Using MPI+OpenMP for your application

• Test different values of threads per process for your particular test
case to see the effect on the performance
• 1, 2, 4, 8, 16 threads per process on ARCHER2
• Usually, 2 or 4 threads
• Make sure the placement is correct and the processes and threads fully

populate the node
• Value for best performance likely to vary depending on:
• Application
• Particular problem
• Number of nodes/cores used

• If underpopulating for memory reasons, then try using multiple
threads
• E.g. 2 threads for half population (64 tasks)

36

Conclusions

• On ARCHER2 applications can benefit from using MPI+OpenMP
• Performance benefits – applications which are communications heavy benefit

from MPI+OpenMP, particularly on more nodes
• Aggregation of messages
• Using 2 or 4 threads per process

• MPI+OpenMP can also help with memory requirements
• Particularly important in memory limited applications

• MPI+OpenMP might be less useful for classical MD codes
• Overall using MPI+OpenMP on ARCHER2 can be of significant benefit

to users – but this is dependent on many factors

