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Introduction

• HPC applications are typically run with MPI
• For some applications MPI+OpenMP can be used as an alternative to MPI 
• This may achieve better performance than MPI – but this depends

• Using MPI+OpenMP may be good for taking advantage of the 
resources on ARCHER2 nodes 
• 128 cores per node
• Different to ARCHER – 24 cores per node

• When can we get good performance with MPI+OpenMP?
• Which applications?
• What sort of systems/test cases?
• How many threads?



Outline

• ARCHER2
• MPI+OpenMP overview
• How is it different to MPI?
• How can it be used on ARCHER2?

• MPI+OpenMP performance investigation on ARCHER2
• Applications investigated
• Test cases
• Results

• How can users benefit from MPI+OpenMP on ARCHER2?



ARCHER2

• UK national service used for 
scientific research

• HPE EX system

• 5,860 nodes (750,080 cores)

• AMD EPYC processors

• HPE Slingshot interconnect



Node-level architecture

• Two 64 core AMD EPYC 7742 
processors – 128 cores

• 256 GB of memory per standard 
node

• 8 non-uniform memory access 
(NUMA) regions of 16 cores 

• Groups of 4 cores which share L3 
cache



ARCHER2 node usage

• ARCHER2 nodes have 256 GB of memory and 128 cores
• Using one MPI process per core gives 2 GB of memory per process
• Less than ARCHER - roughly 2.6 GB per process

• This can be not enough for memory intensive applications – OOM 
errors – underpopulation sometimes necessary
• Using one process per core can affect the MPI communication 

performance
• Using MPI+OpenMP (less processes with multiple threads per 

process) can maybe help here



MPI and MPI+OpenMP in practice

• MPI 
• each core has one process (task) spawned on it

• Own distinct memory space for each process
• Communication between processes takes place via messages
• 128 cores per node on ARCHER2 --tasks-per-node=128

• OMP_NUM_THREADS = 1
• 2 GB of memory per task

• MPI+OpenMP
• Using a mixture of threads and processes spawned onto the cores

• Groups of multiple threads within a memory region
• At least one process per memory region
• Messages between processes

• Less processes mean more memory per process (shared between threads)
• Less copies of data on a node

• Less processes can mean less internode messages
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MPI+OpenMP Usage

• Implemented in many HPC 
applications
• However not always more 

performant than using a single 
thread (e.g. pure MPI)
• Good OpenMP coverage within the 

code required
• Number of threads per process to 

use needs to be tuned to the use 
case and the machine
• Need to be aware of the underlying 

node structure when running e.g. 
regions when memory is shared



MPI+OpenMP ARCHER2 usage

• Using multiple OpenMP 
threads per process
• Less processes (or tasks) than 

128 
• Need to ensure tasks-per-
process x threads = 128
• Fully occupied nodes
• Threads not greater than 16  

(size of NUMA region on 
ARCHER2)

• cpus-per-task should equal 
OMP_NUM_THREADS
• 1, 2, 4, 8, 16 good values for 

threads on ARCHER2
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ARCHER2 PERFORMANCE INVESTIGATION
MPI+OpenMP performance of ARCHER2 applications 



ARCHER2 applications usage – June 2022

• Quantum chemistry codes make up the bulk of 
the most used codes in terms of node hours 
used
• VASP, CP2K, CASTEP

• Classical MD codes
• LAMMPS, GROMACS



ARCHER2 applications investigated

• Well used applications
• Centrally supported by the 

ARCHER2 team
• MPI+OpenMP enabled
• Different test cases for each 

application for different scales
• Full results: 

https://github.com/holly-
t/ARCHER2_hybrid_benchmarking
• Compare performance of using 1, 2, 

4, 8 and 16 threads per MPI process

https://github.com/holly-t/ARCHER2_hybrid_benchmarking


Applications

• CASTEP - density functional theory software package for electronic structure calculations 
using plane waves
• Version 20.11 - GCC version 10.2, Intel MKL 19, Cray-mpich 8.1.4, Cray-fftw 3.3.8.11 
• OpenMP usage – FFTW, linear algebra libraries 

• CP2K - quantum chemistry and solid state physics package – mixed plane wave/Gaussian
• Version 8.1 - GCC version 11.2, Intel MKL 19, Cray-mpich 8.1.9, Cray-fftw 3.3.8.11 
• OpenMP usage - realspace to planewave transfer, collocate and integrate, FFTW, linear algebra 

libraries, + more
• GROMACS – classical MD of biological systems

• Version 2021.3  - GCC version 11.2, Cray-mpich 8.1.9
• OpenMP usage – PME calculations

• LAMMPS – classical MD for materials modelling
• Jan 2022 version - GCC version 10.2, Cray-mpich 8.1.4, Cray-fftw 3.3.8.11 
• OpenMP usage – pair interactions, FFTW

• Quantum ESPRESSO - electronic-structure calculations with plane waves
• Version 6.8 - GCC version 11.2, Cray-libsci 21.08.1.2, Cray-mpich 8.1.9, Cray-fftw 3.3.8.11 
• OpenMP usage - space integrals, point function evaluations, 3D FFTW, linear algebra libraries 



Application test cases

• CASTEP 
• DNA (large memory intensive system)
• Al3x3 (smaller system)

• CP2K 
• H2O-64 (small water system, LDA)
• H2O-512 (larger water)
• LiH-HFX (Hartree Fock exchange, memory intensive)

• GROMACS
• 1400k and 3000k atom MD simulations
• BenchPEP – 12m atom MD simulation

• LAMMPS
• 3000k atom MD simulation

• Quantum ESPRESSO
• GRIR (scf calculation, 4 k-points)
• CNT (single k-point, large and memory intensive system)



RESULTS
Application MPI+OpenMP results



CP2K - H2O-64 benchmark
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• Small system that does not 
scale beyond a couple of 
nodes
• Clear benefit from using 

multiple threads per process 
• Run time dominated by 

MPI_Alltoall, which 
contributes more on multiple 
nodes 
• Using MPI+OpenMP reduces 

the run time of these 
communications – message 
aggregation



CP2K - H2O-512 benchmark
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• Larger version of H2O-64 benchmark
• Using multiple threads per process allows for further scaling beyond the single threaded 

version
• Using 2 or 4 threads per process gives best performance due to reduction in 

communications overhead



CP2K - H2O-512 benchmark
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CP2K – LiH-HFX benchmark
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• Hybrid Hartree-Fock exchange calculation which is memory and compute intensive
• 4 or 8 threads per process gives the best performance
• The increase in performance with multiple threads is less significant as this 

calculation is dominated more by the computation of the integrals rather than 
comms.



CP2K – LiH-HFX benchmark
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CASTEP – DNA benchmark
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• Large, memory intensive calculation

• On 32 and 64 nodes using a single thread per process gives the better performance than using 
multiple threads

• However on 128 and 256 nodes using 2 and 4 threads respectively yields the best performance
• Again MPI collectives dominate in CASTEP



CASTEP – Al3x3 benchmark
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• Smaller system - single point energy calculation
• Using 2 or 4 threads per process gives a performance similar to the single threaded 

version
• On 4 or more nodes using MPI+OpenMP improves the performance



GROMACS – 1400k and 3000k benchmarks
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•MD simulations of 1400k and 
3000k atoms
• Timing of PME communications 

become significant at scale
• Using MPI+OpenMP can help 

reduce the communications cost 
at the scaling limit
• Performance not great for more 

than 4 threads
• Sharing memory beyond the L3 

cache
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GROMACS – benchPEP benchmark
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• 12 million atom MD calculation
• For 1 – 16 nodes there is not much performance difference for 1-4 threads
• On 32 and 64 nodes 4 threads per process yields best performance
• Again with more than 4 threads the performance suffers due to cache effects



LAMMPS – 3000k atom benchmark
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• Using a single thread gives the best performance up to 32 nodes.
• Only on 64 and 128 nodes does using MPI+OpenMP improve the performance
• Main overhead on many nodes is writing to file (for checkpointing in LAMMPS) 

which is poor on many processes – a known issue under investigation
• The performance of this improves with MPI+OpenMP as there are less processes 

writing to disk



Quantum ESPRESSO – GRIR benchmark
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• On 1 node this calculation fails with an out of memory error
• On 2 nodes this fails with OOM on a single thread – not enough memory per process
• Using MPI+OpenMP does not benefit the performance of this calculation – even at 

the limit of scaling 



Quantum ESPRESSO – CNT benchmark
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• This test case has very high memory 
requirements
• Using MPI+OpenMP can prevent OOM 

errors
• MPI+OpenMP also increases the 

memory per process, which improves 
the performance for this system on 8 
and 16 nodes
• Underpopulation alone also improves 

the performance
Test case run time on 8 nodes



Summary

• Quantum chemistry codes CP2K and CASTEP are able to benefit from 
using MPI+OpenMP in general
• The run time of these codes are dominated by MPI collective calls
• MPI+OpenMP reduces the communication overhead

• MPI+OpenMP is useful for Quantum ESPRESSO as it allows more 
memory per process
• Calculations can be memory intensive and may require underpopulation to 

run

• The classical MD codes GROMACS and LAMMPS generally do not 
benefit much from MPI+OpenMP
• It can improve the performance, but only at the scaling limit



BENEFITING FROM MPI+OpenMP

34



How can users benefit?

• Check if your application is MPI+OpenMP enabled
• Performance
• Applications and test cases where MPI collective communications dominate 

the run time may benefit from MPI+OpenMP
• The overhead of MPI communications is reduced as there are less messages 

between processes
• At the scaling limit performance can be improved

• Out of memory errors
• If you have a memory intensive calculation which runs out of memory
• Requires underpopulation of processes on the node (task-per-node=64)
• MPI+OpenMP allows more memory per process similar to underpopulation
• But, using threads as well may give a performance benefit
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Using MPI+OpenMP for your application

• Test different values of threads per process for your particular test 
case to see the effect on the performance
• 1, 2, 4, 8, 16 threads per process on ARCHER2
• Usually, 2 or 4 threads
• Make sure the placement is correct and the processes and threads fully 

populate the node
• Value for best performance likely to vary depending on:
• Application
• Particular problem
• Number of nodes/cores used

• If underpopulating for memory reasons, then try using multiple 
threads
• E.g. 2 threads for half population (64 tasks)
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Conclusions

• On ARCHER2 applications can benefit from using MPI+OpenMP
• Performance benefits – applications which are communications heavy benefit 

from MPI+OpenMP, particularly on more nodes
• Aggregation of messages
• Using 2 or 4 threads per process

• MPI+OpenMP can also help with memory requirements
• Particularly important in memory limited applications

• MPI+OpenMP might be less useful for classical MD codes
• Overall using MPI+OpenMP on ARCHER2 can be of significant benefit 

to users – but this is dependent on many factors


