

AIM & MOTIVATION

1. PhD student in Civil Engineering Design of Steel Structures Earthquake Engineering Structural Safety

2. CFD code development

Applicability of numerical models Coupling with new libraries

UNIVERSIDADE DE **V**IGO

PROJECT: Towards a New Numerical Tool for Multiphysics Simulations of Floating Offshore Wind Turbines

Objectives:

- SPH Code validation
- CFD simulations with real sea states
- Use of GPU supercomputers

Prof. Madjid KARIMIRAD

A tension-leg platform wind turbine

OUTLINE

- 1. Introduction
- 2. The SPH numerical method
- 3. DualSPHysics code
- 4. Floating offshore wind turbines
- 5. Wave energy converters
- 6. Conclusions

FLUID MODELING

FLUID MODELING

Penalba et al. (2017). Mathematical modelling of wave energy converters: A review of nonlinear approaches. **Renewable and Sustainable Energy Reviews**, 78, 1188-1207. <u>Link</u>

Computation

OUTLINE

1. Introduction

2. The SPH numerical method

- 3. DualSPHysics code
- 4. Floating offshore wind turbines
- 5. Wave energy converters
- 6. Conclusions

Each particle is a **nodal point** where **physical quantities** are computed as an **interpolation** of the values of the **neighboring particles** solving the N-S equations and using **summations**.

Schematic view of a SPH convolution (Wikipedia CC BY-SA 4.0)

IMPLEMENTATION

(Density Diffusion Term, Fourtakas et al., 2020)

DualSPHysics

Weakly compressible approach (WCSPH)

Particles = Computational nodes

SPHERIC YouTube: <u>https://youtu.be/huXY-rhwMJA</u>

PROS (comparing with mesh-based CFD codes):

- Handling complex geometries and high deformation;
- Distinguishing between phases due to holding material properties at each particle;
- Easier to couple with other methods.

CONS (comparing with mesh-based CFD codes):

- Boundary conditions are still an open issue;
- Turbulence treatment not fully developed yet;
- Time computation is expensive.

OUTLINE

- 1. Introduction
- 2. The SPH numerical method

3. DualSPHysics code

- 4. Floating offshore wind turbines
- 5. Wave energy converters
- 6. Conclusions

DualSPHysics

Free, open-source code

Collaborative project

LGPL license

Highly parallelised

Pre- & post-processing

Applied to real problems

COLLABORATOR:

UNIVERSITÀ DEGLI STUDI DI SALERNO

DualSPHysics

Free, open-source code

Collaborative project

LGPL license

Highly parallelised

Pre- & post-processing

Applied to real problems

GPU CPU

x100

DualSPHysics

Free, open-source code

Collaborative project

LGPL license

Highly parallelised

Pre- & post-processing

Applied to real problems

Domínguez et al. (2021). DualSPHysics: From fluid dynamics to multiphysics problems. **Computational Particle Mechanics**. <u>Link</u>

Partitioned approach for coupling

Numerical modelling to study the efficiency and survival of WECs

Oscillating wave surge converter (OWSC)

Attenuator

Oscillating water column (OWC)

New Features

- C++ implementation
- Bugs in MoorDyn are solved
- Robust control of exceptions
- Different water depths
- More than one moored floating object
- Mooring connected to more than one floating object
- Define a maximum value of tension for the mooring lines

Ph.D. program: Mr. Iván Martínez-Estévez

https://github.com/imestevez/MoorDynPlus

cpυ **DualSPHysics**

Main developers: UW-Madison (US) and University of Parma (Italy)

Open-source multi-physics simulation engine

-

Tasora et al., 2016

- Collision detection
- Multibody dynamics
- Flexible elements

Ph.D. program: Mr. Iván Martínez-Estévez

OUTLINE

- 1. Introduction
- 2. The SPH numerical method
- 3. DualSPHysics code
- 4. Floating offshore wind turbines
- 5. Wave energy converters
- 6. Conclusions

Towards a New Numerical Tool for Multiphysics Simulations of Floating Offshore Wind Turbines

Reference paper

Oguz et al. (2018). *Experimental and numerical analysis of a TLP floating offshore wind turbine*. **Ocean Engineering**

36 GPU nodes each housing 4 **NVIDIA V100s** (16 GB RAM)

TDP=Thermal Design Power

TDP=300 W

Computing node

 2X 20-core (40 threads) 2.50 GHz Intel Xeon Gold 6248
4X NVIDIA Tesla V100-SXM2-16GN (Volta) GPU RAM 384 GB

Performance issue in SPH

The SPH method is very expensive in terms of computing time.

•

∆t=10⁻⁵-10⁻⁴ ٠ than 16,000 steps are needed to simulate 1.5 s of physical time.

Performance issue in SPH

• SPH presents a **high computational cost** that increases when increasing the number of particles.

• The simulation of **real problems** requires a high resolution which implies simulating **millions of particles**.

The **time required** to simulate a few seconds is **too large**. One second of physical time can take several days of calculation.

IT IS NECESSARY TO USE HPC TECHNIQUES TO REDUCE THESE COMPUTATION TIMES.

GPU acceleration

Graphics Processing Units (GPUs)

- · video game market boosted its improvement
- their computing power has increased much faster than CPUs.
- powerful parallel processors

Advantages: GPUs provide a high calculation power with very low cost and without expensive infrastructures.

Drawbacks: An efficient and full use of the capabilities of the GPUs is not straightforward.

Oguz et al. (2018). *Experimental and numerical analysis of a TLP floating offshore wind turbine*. **Ocean Engineering**

PARTICLE DISCRETIZATION

Pre-processing tool comes bundled in the software package

Oguz et al. (2018). *Experimental and numerical analysis of a TLP floating offshore wind turbine*. **Ocean Engineering**

1 GPU NVIDIA V100s

- **35 s** Physical time
- 2.65 M particles
- 23 h Runtime

Response Amplitude Operator (RAO)

Oguz et al. (2018). *Experimental and numerical analysis of a TLP floating offshore wind turbine*. **Ocean Engineering**

WAVE GENERATION AND PROPAGATION

wave period = [1.00 - 5.00] s

wave height = 0.06 m

water depth = 1.91 m

RAO VALIDATION

Tests under regular waves

1 GPU NVIDIA V100s

48 s	Physical time
5.82 M	Particles
79 h	Runtime

RAO VALIDATION

Tests under regular waves

RAO VALIDATION

"[...] it is presumed that this lack of **viscous effects** leads to the overestimation of the surge response at the peak of the RAO."

Oguz et al. (2018). *Experimental and numerical analysis of a TLP floating offshore wind turbine*. **Ocean Engineering**

INVESTIGATION

time= 0.00 s

Tagliafierro B., Karimirad M., et al. (2022). Numerical assessment of a Tension-leg platform wind turbine in intermediate water using the Smoothed Particle Hydrodynamics method. Energies (under review)

1 GPU **NVIDIA V100s**

- 1227 s Physical time
- Particles 2.58 M
- 28.5 d Runtime

OUTLINE

- 1. Introduction
- 2. The SPH numerical method
- 3. DualSPHysics code
- 4. Floating offshore wind turbine
- 5. Wave energy converters
- 6. Conclusions

Simulating WECs with DualSPHysics

Project PI: Prof. Alex CRESPO

Wave energy converters	s (WECs)
------------------------	----------

<u>Crespo et al., 2017</u>	Coastal Engineering	
	Oscillating water column	
Verbrugghe et al., 2018	Coastal Engineering	
	Oscillating water column and point absorber	
Verbrugghe et al., 2019	Energies	
	Point absorber	Oscillatin
<u>Brito et al., 2020</u>	Renewable Energy	(Brito et
	Oscillating wave surge converter with PTO	
Ropero-Giralda et al., 2020	Renewable Energy	
	Point absorber under regular and focused waves	time= 0.00 s
Quartier et al., 2021	Water	
	Hydrodynamics drag on point absorbers	
Ropero-Giralda et al., 2021	Energies	
	System Identification of Point absorbers	
Quartier et al., 2021	Applied Ocean Research	
	Oscillating water column including air effects	ę.,
Tagliafierro et al., 2022	Applied Energy	Radiatic
	Taut moored point absorber under focused waves	di. 2021

u(m/s) 0.50 0.25 0.0 0 0.25 0.0 0 0.00 0.00 0 0.00 0.00 0.00 0 0.0

Oscillating wave surge converter under regular waves (Brito et al. 2020)

Radiation test for a point absorber (Ropero-Giralda et al. 2021)

Illustration by Alfred Hicks, NREL. https://www.nrel.gov/water/wave-array.html

Grid

Operations

Control Center

Substation

Cable to

Shore

UPPSALA UNIVERSITET

Uppsala WEC

Göteman et al., 2015

Experimental setup for testing under wave actions.

Schematic of the WEC (Waters et al. 2007) with a cylinder buoy. Copyright 2007 AIP Publishing LLC.

Engström et al., 2017

$$\begin{cases} M \ddot{z_1} + c_{PTO} \dot{z_1} + K(z_1)(z_2 - z_1) = -Mg, \\ m \ddot{z_2} + k_m(z_1 - z_2) = mg + F(t), \end{cases}$$

$$K = \begin{cases} k_m & \text{if } |z_1| < L_s/2; \\ k_m + k_{es} & \text{if } |z_1| \ge L_s/2; \end{cases}$$

Tagliafierro et al., 2022

Label	Function	Instance	Manager
A	Buoy	Moving	CHRONO
B	Taut Line	Mooring line	MoorDyn
C End-stopper	Moving	CHRONO	
	End-stopper	Spring	CHRONO
		Contact	CHRONO SMC
D	D Translator	Moving	CHRONO
D Translator	Translator	Contact	CHRONO SMC
E	Energy	Damper	CHRONO
F	End-stopper	Contact	CHRONO SMC

Tagliafierro et al., 2022

MM

Label	<i>dp</i> [m]	contact_distance [m]
Case (1)	R/5	0.5dp
Case (2)	R/5	0.1dp
Case ③	R/7	0.1dp

12

UPPSALA WEC

Tagliafierro, B., Martínez-Estévez, I., Domínguez J.M., Crespo, A.J.C., Göteman, M., Engström, J., Gómez-Gesteira, M. **(2022)**. *A numerical study of a taut-moored pointabsorber wave energy converter with a linear power take-off system under extreme wave conditions*. Applied Energy, 311 https://doi.org/10.1016/j.apenergy.2022.1186 29

Katsidoniotaki, E., & Göteman, M. **(2022)**. *Numerical modeling of extreme wave interaction with point-absorber using OpenFOAM*. Ocean Engineering, 245 doi:10.1016/j.oceaneng.2021.110268

FLOATING OSCILLATING SURGE WAVE ENERGY CONVERTER

2 flaps attached to a submerged moored platform Platform includes a Power Take-Off (PTO) box

https://youtu.be/OUxbaEC2K6Y

FOSWEC – EXTREME WAVES

time= 0.00 s

ACKNOWLEDGEMENTS

The **EPhysLab** group fully supported this work by providing the use of the HPC system monkeyisland.uvigo.es. The authors would like to express their very great appreciation.

The work has been performed under the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the EC Research Innovation Action under the H2020 Programme; in particular, the author gratefully acknowledges the support of School of Natural and Built Environment (Queen's University Belfast) and the computer resources and **technical support provided by EPPC (University of Edinburgh)**.

This work was supported by the project SURVIWEC PID2020113245RB-I00 financed by MCIN/ AEI /10.13039/ 501100011033 and by the project ED431C 2021/44 "Programa de Consolidación e Estructuración de Unidades de Investigación Competitivas" financed by Xunta de Galicia, Consellería de Cultura, Educación e Universidade, Spain.

FEDER - FONDO EUROPEO DE DESENVOLVEMENTO REXIONAL "Unha maneira de facer Europa"

COST Action CA17105, COST Association. **WECANet**: A pan-European Network for Marine Renewable Energy

My Ph.D. scholarship was granted by the Italian Ministry for Education, University and Research (MIUR) as part of the program "Dottorati Innovativi a caratterizzazione industriale", ID DOT 1328490–3, funded by the European Union (Structural Funding ERDF-ESF for "Research and Innovation" 2014–2020).

OUTLINE

- 1. Introduction
- 2. The SPH numerical method
- 3. DualSPHysics code
- 4. Floating offshore wind turbine
- 5. Wave energy converters
- 6. Conclusions

CONCLUSIONS

- An SPH framework can be both as accurate as other CFD solvers;
- A wide variety of structures can be simulated;
- Find the right balance between runtime and accuracy;
- GPU-accelerated hardware.

FUTURE WORK

- Investigation of more complex systems;
- Investigate Control effects on the structure performance

for extreme events.

Bonaventura TAGLIAFIERRO

btagliafierro@gmail.com https://btagliafierro.github.io/

