HPC-Europa3 project – assessing the nature and role of band alignment of copper oxides heterostructures

Aleksandar Živković

ARCHER2 webinar series 27/04/2022

Imperial College London

Prof Nora H. de Leeuw Prof Nicholas Harrison

HPC-Europa3 project – assessing the nature and role of band alignment of copper oxides heterostructures

Aleksandar Živković

Dr Giuseppe Mallia

King

ARCHER2 webinar series 27/04/2022

Imperial College London

- access to world-class HPC systems to academic and industrial researchers
- scientific collaboration with host researchers in any field
- technical support by the HPC centres
- travel and living expenses reimbursed

CINECA (Bologna - IT)	
EPCC (Edinburgh - UK)	2021
BSC (Barcelona - SP)	
HLRS (Stuttgart - DE)	
SURFsara (Amsterdam - NL)	2020
CSC (Helsinki - FIN)	
GRNET (Athens, GR)	
KTH (Stockholm, SE)	
ICHEC (Dublin, IE)	

Nuts and bolts of band theory

Nuts and bolts of band theory

Utrecht University

Photovoltaics - ingredients

Photovoltaics – basic mechanism

pn - junction

- Exploitation of the photovoltaic effect
- Interface (junction)
 between two materials
 (usually semiconductors)
- Diodes, transistors, solar cells, LEDs, integrator circuits, etc.

Utrecht University

Alignment types

- The behaviour of a junction depends crucially on the alignment of the energy bands at the interface
 - Band bending, band offsets
- Search for suitable materials

Utrecht University

Project itself

 Heterojunction of copper oxides: assessing the role of band alignment and vacancy diffusion across the interface from studies based on density functional theory

Cuprite Cu₂O

Tenorite CuO

Alternative (pseudo)view...

• Cuprite

• Tenorite

"...minimises conflict between genders at work in professions where women are discourages from promotion...encourages harmony if men find it difficult to work for a female employer."

"...stimulate the healing energies of the earth. It is a very calming stone. And as such is very useful in group endeavours."

Why DFT? Why Imperial? Why ARCHER2?

@HPC-Europa3 – excellent platform to
collaborate on short term project (test
"wacky ideas")

@Imperial – expertise with the usage and coding of CRYSTAL17

@ARCHER2 – ideal hardware for system size and complexity + support (Catherine and William – BIG thanks!)

Results – Cu₂O

- First transition dipole forbidden; quadrupole allowed
- Fundamental gap around 2.17 eV

• Band diagram

Results – CuO

- Monoclinic, strongly-correlated nature •
- Intrinsic magnetism (AFM),
 - E_g = 1.4 1.7 eV
- spin up spin down 2 2.99 eV Energy (eV) Oxygen M Α ΓΜ YΓ Y M Α ΓΜ Y L ٧ V Copper
- Band diagram •

13

-1

-2

Y

Results – CuO

- 2x3x2 supercell, perfect (ground state) spin arrangement
- 2x3x2 supercell, with ~ 5% spin alteration $\rightarrow \Delta E = 0.1 \text{eV/spin}$

Results – surfaces

- Cu₂O (111), 15.6 Å thick
- $\gamma = 1.136 \text{ J/m}^2$

Miller index	Surface energy (J/m2)	Band gap (eV)
(1 1 1)	0.863	2.461
(-1 1 1)	0.935	2.036
(0 1 1)	0.890	2.651
(2 0 -2)	1.329	2.067

The absorption spectra [Fig. 1(a)] show a systematic blueshift in the absorption edge for CuO nanostructures, with the increase in the concentration of KMnO₄. The indirect bandgap of the nanostructures corresponding to the lower KMnO₄ concentration was estimated to be $\sim 1 \text{ eV}$, and indirect transitions were found to be dominant in comparison with direct transitions. The direct bandgap was calculated using the Tauc plot [Fig. 1(b)]. As the concentration of KMnO₄ increased from 0.2 to 50 mM, the direct bandgap was enhanced from 3.27 to 4 eV. Such a

Results – CuO surface

Partial electron density

CuO morphology

Conventional	hal Magnetic	
(1 1 1)	(2 1 0)	
(-1 1 1)	(0 1 2)	
(0 1 1)	(1 1 1)	
(2 0 -2)	(0 0 -4)	

Miller index	Polarizability tensor, Alpha(Bohr^3)			
	XX	YY	ZZ	
(1 1 1)	3395.52	2365.65	409.17	
(-1 1 1)	2709.04	2716.87	436.37	
(0 1 1)	2467.05	3030.10	431.39	
(2 0 -2)	747.07	924.44	144.15	

Band alignment (independent compounds)

• Tunability depending on growth direction (?)

Explicit interface: CuO(-111) on Cu₂O(111)

• Initial structure

• Relaxed structure

Explicit interface: CuO(-111) on Cu₂O(111)

• Initial structure

• Relaxed structure

CuO(-111) on Cu₂O(111): Electronic layer-projected DOS

Utrecht University Živković et al, submitted

CuO(-111) on Cu₂O(111): Electronic layer-projected DOS

Explicit interface: Cu₂O(111) on CuO(-111)

• Initial structure

• Relaxed structure

Last slide

So far:

- Independent alignment misleading
- States present at the CuO/Cu₂O interface

What's next?

- CuO/Cu₂O interface with different surfaces
- CuO/Cu₄O₃/Cu₂O interface

Thank You all for Your attention

Questions? Comments? Critique? Ideas? Contact: a.zivkovic@uu.nl

> " ... and may your God go with you." Dave Allen