
Julien Sindt

EPCC, The University of Edinburgh

J.Sindt@ed.ac.uk

Ten* Tips for using HPC

1. Don’t struggle alone

Service Desks
 Most HPC services have a service desk

staffed by experts who are there to help you
 If something is not working as you expect

then contact them

Research Software Engineers
 Many RSE groups around the UK that can

provide advice and support
 https://society-rse.org/community/rse-groups/

https://society-rse.org/community/rse-groups/

2. Learn an in-terminal text editor

https://xkcd.com/378/

But which one?

 vim is very powerful and available everywhere
 emacs is more intuitive to use than vi and almost always available
 nano is simple to use but less powerful, not always available

https://xkcd.com/378/

3. Submit test jobs when scaling up

• Running at large scale can have
unexpected consequences.

• These can often be captured with a short
test run.

• Most HPC facilities have a short/debug
queue – use them!

4. Run basic benchmarking
Or: Why does it run slower when I used more cores?

• 100 node-hours of benchmarking
can save 1,000’s of node-hours.
● Definitely true for hybrid systems.

• Popular HPC programs will have
benchmarking data.

• Again, short tests can go a long way.

• This is a must on new architecture.
Number of processes

R
un

tim
e

(s
)

5. Plan for the future

• Have a data management plan

• What files need transferring?

• Does compression help or hinder?

• How long will it take to transfer data?

• Think carefully before limiting your code.

• A “quick fix” can have costly consequences!

• Consider future collaborators.

It will be here sooner than you think.

6. Read the docs…

• Most HPC facilities provide good
documentation.

• Documentation is the first port of call when
providing assistance.

• More and more, the user community is
welcome to join in improving the
documentations:

https://github.com/ARCHER2-HPC/archer2-docs

7. Make use of training courses

• Lots of HPC, software, data analysis training material available

• ARCHER2: https://www.archer2.ac.uk/training/
• Lots of free online training
• Repository of past materials: https://www.archer2.ac.uk/training/materials/

• The Carpentries: https://carpentries.org/

• CodeRefinery: https://coderefinery.org/

https://www.archer2.ac.uk/training/
https://www.archer2.ac.uk/training/materials/
https://carpentries.org/
https://coderefinery.org/

8. Learn Linux command line

• You will need basic knowledge to use HPC
facilities.

• Modern Linux command line has many useful,
powerful features:

• E.g. sed, awk, paste, uuidgen

• Combining bash and Python can lead to very
powerful capabilities

9. Don’t reinvent the wheel

• Build on top of existing and tested
libraries as these are often faster.

● HPC facilities often come with
optimised libraries (as do some
compilers).

• Where possible, use centrally-
maintained software.

10. Learn Pandas or R

• Manipulating data is key to almost all research

• Pandas:
• https://pandas.pydata.org/pandas-docs/stable/getting_started/intro_tutorial

s/index.html
• Pandas can be parallelised using Dask

• R:
• https://education.rstudio.com/learn/beginner/

https://pandas.pydata.org/pandas-docs/stable/getting_started/intro_tutorials/index.html
https://pandas.pydata.org/pandas-docs/stable/getting_started/intro_tutorials/index.html
https://education.rstudio.com/learn/beginner/

11. Some that didn’t make the list

1. Understand your black boxes.

2. sudo will not solve anything.

3. Think before running though Python.

4. Consider visualising locally.

5. Don’t underestimate I/O costs.

6. Know the consequences of the code
change you’re about to make

Ten tips

1. Don’t struggle alone

2. Learn an in-terminal text editor

3. Submit test jobs before scaling up

4. Run basic benchmarking

5. Plan for the future

6. Read the docs…

7. Take advantage of training courses

8. Learn Linux command line

9. Don’t reinvent the wheel

10. Learn Pandas or R

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

