cpcC

Ten” Tips for using HPC . J—

4€9): THE UNIVERSITY
V- of EDINBURGH

Julien Sindt
EPCC, The University of Edinburgh
J.Sindt@ed.ac.uk

1. Don’t struggle alone

71 A
\ e
Service Desks Research Software Engineers

* Most HPC services have a service desk * Many RSE groups around the UK that can

staffed by experts who are there to help you provide advice and support
* If something is not working as you expect * https://society-rse.org/community/rse-groups/

then contact them

https://society-rse.org/community/rse-groups/

2. Learn an in-terminal text editor

But which one?

nanp? REAL HEY. REAL WELL, REAL NO, REAL | |REAL PROGRAMMERS EXCUSE ME, BUT
PROGRAMMERS PROGRAMMERS | | PROGRAMMERS | | PROGRAMMERS | | USE A MAGNETIZED REAL PROGRAMMERS

. -

USE emacs USE wvim. VSE ed. USE cot. NEEDLE AND A USE BUTTERFLIES.

\ | | .’ STEADY HAND. \

/ /
https://xkcd.com/378/

* vim is very powerful and available everywhere
* emacs is more intuitive to use than vi and almost always available
* nano is simple to use but less powerful, not always available

https://xkcd.com/378/

3. Submit test jobs when scaling up

* Running at large scale can have
unexpected consequences.

* These can often be captured with a short
test run.

* Most HPC facilities have a short/debug
gueue - use them!

4. Run basic benchmarking

Or: Why does it run slower when | used more cores?

* 100 node-hours of benchmarking
can save 1,000’'s of node-hours.

* Definitely true for hybrid systems.

* Popular HPC programs will have
benchmarking data.

* Again, short tests can go a long way.
* This is a must on new architecture.

25

Runtime (S)

(=]

32

64 128 256 512 1024 2048 4096 8192

Number of processes

5. Plan for the future

It will be here sooner than you think.

* Have a data management plan
* What files need transferring?
* Does compression help or hinder?

* How long will it take to transfer data?
* Think carefully before limiting your code.

* A “quick fix” can have costly consequences!
* Consider future collaborators.

6. Read the docs...

* Most HPC facilities provide good
documentation.

* Documentation is the first port of call when
providing assistance.

* More and more, the user community is
welcome to join in improving the
documentations:

https://github.com/ARCHER2-HPC/archer2-docs

/. Make use of training courses

* Lots of HPC, software, data analysis training material available

* ARCHER2: https://www.archer2.ac.uk/training/
* Lots of free online training

* Repository of past materials: https://www.archer2.ac.uk/training/materials/

* The Carpentries: https://carpentries.org/
* CodeRefinery: https://coderefinery.org/ 2

N =

https://www.archer2.ac.uk/training/
https://www.archer2.ac.uk/training/materials/
https://carpentries.org/
https://coderefinery.org/

8. Learn LiInux command line

THE LINUX * You will need basic knowledge to use HPC
facilities.
* Modern Linux command line has many useful,
powerful features:
* E.g. sed, awk, paste, uuidgen

* Combining bash and Python can lead to very
powerful capabilities

9. Don’t reinvent the wheel

* Build on top of existing and tested
libraries as these are often faster.

* HPC facilities often come with
optimised libraries (as do some
compilers).

* Where possible, use centrally-
maintained software.

10. Learn Pandas or R

* Manipulating data is key to almost all research

* Pandas:

* https://pandas.pydata.org/pandas-docs/stable/getting started/intro tutorial
s/index.html

* Pandas can be parallelised using Dask
* R:
* https://education.rstudio.com/learn/beginner/

https://pandas.pydata.org/pandas-docs/stable/getting_started/intro_tutorials/index.html
https://pandas.pydata.org/pandas-docs/stable/getting_started/intro_tutorials/index.html
https://education.rstudio.com/learn/beginner/

11. Some that didn't make the list

Understand your black boxes.

sudo will not solve anything.

Think before running though Python.
Consider visualising locally.

Don’t underestimate 1/0 costs.

ok E

Know the consequences of the code
change you're about to make

Ten tips

Don’t struggle alone

Learn an in-terminal text editor
Submit test jobs before scaling up
Run basic benchmarking

Plan for the future

Read the docs...

Take advantage of training courses
Learn Linux command line

W 00N O kDR

Don’t reinvent the wheel
10. Learn Pandas or R

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

