

HPC-Europa 3 – Project: HPC1796WT3

In collaboration with M. S. Campobasso⁽²⁾ S. Gentile⁽³⁾

(1) School of Engineering, University of Basilicata, Potenza, Italy (2) Department of Engineering, Lancaster University, Lancaster, United Kingdom 2D 1.5D (3) National Research Council of Italy (CNR) - Institute of Methodologies for Environmental Analysis (IMAA), Tito Scalo (PZ), Italy

@ EPCC, University of Edinburgh, UK, 20/04/2022

UNIVERSITA' DEGLI STUDI

DELLA BASILICATA

archer2

Webinar

300

E 200

100

4 6.0e+00

0.0e+00 2

WRF-ARW

300

E 200

100

Alessio Castorrini⁽¹⁾

Biography

Alessio Castorrini

Researcher

Institution and department Università degli Studi della Basilicata · School of Engineering (SI-UniBas)

UNIVERSITA' DEGLI STUDI

Affiliations

Waseda University Visiting Researcher 2015

Education

Sapienza Università di Roma Doctor of Philosophy (PhD), Industrial Engineering 2013 - 2017

Sapienza Università di Roma Master's degree, Aerospace, Aeronautical and Astronautical Engineering 2010 - 2013

Sapienza Università di Roma

Laurea in Ingegneria Aerospaziale, Laurea I Livello 2006 - 2009

Teaching

Sapienza Università di Roma Fluid Structure interaction 2019-2021

Università degli Studi della Basilicata Metodi agli elementi finiti per l'interazione fluido struttura 2019-2022

Background

Project background and overview

Problem 1

Average power loss due to wind turbine wakes can reach the 20% in large offshore wind farms

Numerical simulation supports the design and optimization of wind farms layout and control strategies for energy loss reduction

Wake effect behind turbines at Vattenfall's Horns Rev wind farm off Denmark. Photo by: Vattenfall

Project aim

Use of HPC to simulate with high level of accuracy the aerodynamics of a wind turbine rotor using rotor resolved geometry, to verify the reliability of results obtained with a lower order model commonly adopted to simulate wind farms

Project background and overview

Problem 2

New wind turbines design reach nominal powers up to 15MW and rotor diameters of more than 200 m

- → Blades can span heights from 30 m to 330 m above the ground
- → High-resolution CFD allow to provide reliable wind vertical profiles for surface layer and neutrally stratified ABL (Inflow BC based on similitude theory and theoretical profiles)
- → Mesoscale models (Numerical weather prediction) allows to simulate the whole atmosphere dynamics including microphysics and thermal effects but it does not have sufficient resolution to catch local surface effects.

Use of HPC to generate with the CFD a realistic wind prediction over an offshore location forcing unstable wind from NWP as boundary condition and including wave motion with a moving grid approach

Background

Challenges in wind farm and wind turbine aerodynamics

For reliable numerical simulation of wind farms we need:

• Accurate modelling of the wind turbine aerodynamics (and loads)

• Adequate wake resolution to assess the energy resource available to wind turbines downstream

• Realistic wind inflow at the rotors

- Actuator line model
- Rotor resolved geometry simulation
- Reynolds Averaged Navier Stokes (RANS) Simulation
- Hybrid LES-RANS (DDES)
- Large Eddy Simulation (LES)
- Neutral Atmospheric Boundary Layer (ABL) Log-Law
- Steady ABL-RANS
- Unsteady ABL-RANS
- LES

Can be coupled with Numerical Weather Prediction

Challenges in wind farm and wind turbine aerodynamics

For reliable numerical simulation of wind farms we need:

- Wind turbine aerodynamics using rotor resolved geometry and actuator line model
 - Baseline model and numerical experiment
 - CFD modelling and boundary conditions
 - Computational domain, scalability and grid sensitivity analyses
 - Validation for axial and yawed wind
 - Wake analysis and comparison with reduced order models
- Study of the effect of marine waves on the wind profile
 - Case study
 - CFD modelling and boundary conditions
 - Computational domain and grid sensitivity analyses
 - Results

Baseline model and test conditions

Experimental wind turbine rotor from MEXICO project (Model Experiments in Controlled Conditions)

Radius	5.5 m
Blade length	2.04 m
Chord range	0.24 m – 0.05 m
Velocity	44.52 rad/s
Max Reynolds num.	5.5 x 10⁵

[1] Snel, H., J. G. Schepers, and B. Montgomerie. "The MEXICO project (Model Experiments in Controlled Conditions): The database and first results of data processing and interpretation." *Journal of Physics: Conference Series*. Vol. 75. No. 1. IOP Publishing, 2007.

[2] Schepers JG, Boorsma K, Cho T, et al. Final report of IEA Task 29, Mexnext (Phase 1): Analysis of Mexico wind tunnel measurements. Energy Research Centre of the Netherlands 2012; ECN-E-12-004.

Baseline model and test conditions

Experimental wind turbine rotor from MEXICO project (Model Experiments in Controlled Conditions)

			\A/!			
		Test ID	vvind velocity (m/s)	Yaw angle (°)	TSR (-)	
	$\left(\right)$	1	10	0	10,0	
		2	15	0	6,7	
Experimental	Experimental	3	24	0	4,2	
Validation -	data available	4	10	30	10,0	
	[1,2]	5	15	30	6,7	
		6	24	30	4,2	Typical
		7	15	20	6,7	configuration for — Application
						wake control

[1] Snel, H., J. G. Schepers, and B. Montgomerie. "The MEXICO project (Model Experiments in Controlled Conditions): The database and first results of data processing and interpretation." *Journal of Physics: Conference Series*. Vol. 75. No. 1. IOP Publishing, 2007.

[2] Schepers JG, Boorsma K, Cho T, et al. Final report of IEA Task 29, Mexnext (Phase 1): Analysis of Mexico wind tunnel measurements. Energy Research Centre of the Netherlands 2012; ECN-E-12-004.

Wind turbine aerodynamics

CFD modelling and numerical solver

Governing equations

 3D, Steady and Unsteady Incompressible Navier-Stokes equations

Turbulence modelling

- Reynolds Averaged Navier Stokes (RANS) + k-ω SST turbulence closure (eddy viscosity model)
- Delayed Detached Eddy Simulation (Hybrid LES RANS k- ω SST)

Wind turbine modelling

- Full rotor simulation
- Actuator line model

Numerical solver

- openFoam.v2106*
 - Finite volume technique
 - SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm for steady solutions
 - PIMPLE (Pressure-Implicit with Splitting of Operators + SIMPLE)
 algorithm for unsteady solutions
- MPI based domain decomposition Mesh decomposition with METIS algorithm
- Dynamic Mesh

Mesh generation tool

cfMesh**

(*) https://www.openfoam.com/ (**) https://cfmesh.com/

Castorrini, A., High-resolution prediction of wind profile and wind turbine aerodynamics using CFD and HPC. Webinar, 22/04/2022

٠

Wind turbine aerodynamics

CFD domain and boundary conditions

Mesh at the blade

Zoom, Full rotor case - blade cut (plane $Z = 1 \text{ m} \rightarrow r = 0.5 \text{R}$)

Mesh near the rotor for validation cases (1-6)

Zoom on near wake region, cut (plane Z = 0)

Full rotor

Actuator line

Wind turbine aerodynamics

Scalability and grid sensitivity analyses

• Speed up test has been done over 7 time steps of the full rotor URANS simulation with 10 PIMPLE iterations

Archer2 Nodes	MPI processes	Wall clock time (s)	Ideal time	Speed up	Ideal speed up
1	128	370,4	16	1,00	1
4	512	92,6	4	4,00	4
8	1024	46,2	2	8,02	8

• Three refinement levels have been used for case 1, verifying the grid independence for the medium refinement grid

Grid	Nodes	Thrust (N)	Err. (%)	Torque (Nm)	Err. (%)
Coarse	11.779.063	1013,5	2,79	71,0	2,94
Medium	23.512.896	987,8	0,18	72,1	1,40
Fine	40.547.879	986,1	0	73,1	0

Castorrini, A., High-resolution prediction of wind profile and wind turbine aerodynamics using CFD and HPC. Webinar, 22/04/2022

Exp.

Thrust

974 N

Torque

68 Nm

Offshore wind vertical profile

Simulation info

- Three steady simulations:
 - > 15000 pseudo-time steps

- Three time dependent simulations:
 - ➢ 6 seconds physical time
 - 1° of revolution per time step
 - > 7 PIMPLE iterations per time step

- Resources for 1 steady simulation
 - 4 ARCHER2 nodes (512 MPI processes / cores)
 - ➤ (around) 3 hours w.c.t.
 - ➤ (around) 1,5K core hours

- Resources for 1 unsteady simulation
 - 8 ARCHER2 nodes (1024 MPI processes / cores)
 - (around) 29,1 hours w.c.t.
 - > (around) 30K core hours

Verification with measured data

Wind turbine aerodynamics

Blade integral load, averaged in one revolution of the rotor, shows minimal differences with respect to the measurements. CFD tends to slightly underestimate the axial force (Thrust)

Actuator line model provides good results in terms of loads for both axial and yawed wind tests

/ = 0°	Case 1 (TSR = 10.0)		Case 2 (TSR = 6.7)		Case 3 (TSR = 4.2)	
	Thrust (N)	Torque (Nm)	Thrust (N)	Torque (Nm)	Thrust (N)	Torque (Nm)
kp.	974	68	1663	317	2173	715
FD (FR)	987	72	1703	325	2124	515
FD (AL)	1027	77	1658	322	w.i.p.	w.i.p.
(= 30°	Case 4 (T	SR = 10.0)	Case 5 (T	SR = 6.7)	Case 6 (1	SR = 4.2)
(= 30°	Case 4 (T Thrust (N)	SR = 10.0) Torque (Nm)	Case 5 (T Thrust (N)	SR = 6.7) Torque (Nm)	Case 6 (T Thrust (N)	SR = 4.2) Torque (Nm)
(= 30° kp.	Case 4 (T Thrust (N) 884	SR = 10.0) Torque (Nm) 51	Case 5 (T Thrust (N) 1480	SR = 6.7) Torque (Nm) 242	Case 6 (1 Thrust (N) 2012	SR = 4.2) Torque (Nm) 562
(= 30° kp. FD (FR)	Case 4 (T Thrust (N) 884 809	SR = 10.0) Torque (Nm) 51 51	Case 5 (T Thrust (N) 1480 1353	SR = 6.7) Torque (Nm) 242 227	Case 6 (1 Thrust (N) 2012 1937	SR = 4.2) Torque (Nm) 562 525
(= 30° kp. FD (FR) FD (AL)	Case 4 (T Thrust (N) 884 809 w.i.p.	SR = 10.0) Torque (Nm) 51 51 w.i.p.	Case 5 (T Thrust (N) 1480 1353 1325	SR = 6.7) Torque (Nm) 242 227 262	Case 6 (1 Thrust (N) 2012 1937 1559	SR = 4.2) Torque (Nm) 562 525 465

Wind turbine aerodynamics

Verification with measured data

Prediction of reliable offshore wind vertical profile

Application to a possible setup for wake control strategy (Case 7)

- Extended wake refinement region
- DDES turbulence modelling
- 20° Yaw angle
- 15 m/s wind velocity

→ 113.830.868 nodes

Offshore wind vertical profile

Simulation info

- Two time dependent simulations:
 - 1. (Start up) URANS simulation
 - ➢ 6 seconds physical time
 - \succ 2° of revolution per time step
 - > 7 PIMPLE iterations per time step

- 2. DDES simulation
- > 1,5 seconds of physical time
- \succ 0,5° of revolution per time step
- > 7 PIMPLE iterations per time step

- Resources
 - 8 ARCHER2 nodes (1024 MPI processes / cores)
 - > (around) 75 hours w.c.t.
 - ➤ (around) 76K core hours

- Resources
 - 8 ARCHER2 nodes (1024 MPI processes / cores)
 - ➤ (around) 72 hours w.c.t.
 - (around) 73K core hours

Wind turbine aerodynamics

Castorrini, A., High-resolution prediction of wind profile and wind turbine aerodynamics using CFD and HPC. Webinar, 22/04/2022

20

A first comparison with AL model

Simulation U = 15m/s, TSR = 6,7 , Y = 20° Q-criterion, cut (plane Z = 0)

Full rotor

Actuator line

Results given by the two models shows very small differences in the near field wake

A first comparison with AL model

Simulation U = 15m/s, TSR = 6,7 , Y = 20°

Velocity magnitude, cut (plane Z = 0)

Full rotor

Actuator line

Thrust = 1499.9 N Torque = 291.9 Nm

Wake deflection due to rotor-flow reaction force is similarly predicted by both the models

Wind turbine aerodynamics

DDES model helped to slightly extend the wake resolution downstream

This can be further improved by using grids at the far field and boundary conditions which are more suitable for an LES-type simulation

Offshore wind vertical profile **Prediction of wind inflow using NWP and CFD**

- Selection of a site, day and time for the test
- → Location of the FINO2 research platform (Baltic Sea)
- → Day: 15/12/2012, Time 10:30 a.m.
- Mesoscale simulation of the wind field with NWP
 Mesoscale data provided by CNR-IMAA performing a 48 hours of simulation with Weather Research and Forecast* (WRF)
- Local-scale CFD domain definition and generation of appropriate BC from mesoscale data (wind velocity, temperature, turbulence intensity)
- RANS simulation + k-ε turbulence closure (eddy viscosity model) + buoyancy and temperature transport equations + volume forces for ABL + sea waves motion

(*) https://www2.mmm.ucar.edu/wrf/users/

Offshore wind vertical profile

Computational domain and grid sensitivity analyses

Offshore wind vertical profile

Simulation info

- Smaller domain but long run
 - ➢ 600 seconds physical time
 - > 0.05 seconds time step
 - > 7 PIMPLE iterations per time step
- Resources for one simulation
 - ➤ 4 ARCHER2 nodes (512 MPI processes / cores)
 - ➤ (around) 16 hours w.c.t.
 - ➤ (around) 8K core hours

Grid sensitivity analyses

• Three refinement levels have been tested with the steady RANS solver verifying the grid independence for the medium grid

Number of cells	Average y+	RMSE U (m/s)	RMSE Dir (°)	RMSE k (m2/s2)
3.350.479	313.8 (min 65.4)	0.2962	0.4072	0.30874
12.577.954	285.8 (min 68.1)	0.0194	0.1095	0.00867
18.889.390	285.1 (min 76.3)	-	-	-

Results

• Wind vertical profiles (Velocity, direction, turbulent kinetic energy)

Offshore wind vertical profile

Results

Effect of waves motion

- > Turbulence production in the first part of the surface layer
- ➤ Upwash effect

Results

• Comparison of the wind profile with a theoretical wind vertical profile based on power-law (PL)

Thank you! alessio.castorrini@unibas.it

