
CONTAINERS IN HPC

Alfio Lazzaro & Harvey Richardson
HPE HPC/AI EMEA Research Lab

ARCHER2 Webinar, March  2021



Brief introduction to Containers
Why they are useful

Docker: the de-facto industrial standard technology

Containers in HPC
HPC requirements

Specific solutions: Singularity, Charliecloud, Sarus, Shifter

HPC in Containers
Performance challenges

Cross-compilation

Optimized libraries

Hardware support, eg accelerators and network

MODAK: Management of Optimized Deployment of Applications with Containers

2

OUTLINE



This is not a tutorial on how to use containers
Based on (our) user experience, ie no admin experience

Ignore installation, management, and security aspects

Only focus on HPC systems
Batch system compatibility (eg SLURM and PBS)

Support for optimized libraries and hardware, eg MPI and GPU supports

This presentation is relevant to containers in general
Although the examples will be based on Singularity

Some extra information is included to illustrate useful singularity commands and workflow

3

CAVEATS (1)



Focus on how to achieve runtime performance
Ignore other aspects like formats, image size, building 

However, we will not show performance results, 
rather we will concentrate on techniques to achieve 
performance

Several reports reporting on performance of 
containerized applications, e.g.

A. Torrez, T. Randles and R. Priedhorsky, HPC 
Container Runtimes have Minimal or No Performance 
Impact, 2019 IEEE/ACM International Workshop on 
Containers and New Orchestration Paradigms for 
Isolated Environments in HPC (CANOPIE-HPC), 
Denver, CO, USA, 2019, pp. 37-42, doi: 
10.1109/CANOPIE-HPC49598.2019.00010.

4

CAVEATS (2)



5

INTRODUCTION TO CONTAINERS



A technology to package and deploy software that runs with access to a limited set of host
resources

Containers run in an isolated environment

They solve the problem of making your software run reliably when moved from one computing 
environment to another (portable, reproducible workflow)

Using containers allow application deployment across systems without having to build and 
configure separately: Linux OS + your applications + all their dependencies, libraries and 
other binaries and configuration files needed to run, everything bundled in one package

6

WHY CONTAINERS



In contrast to virtual machines (VM), which virtualize the hardware and need a complete 

deploy and run
Clearly, containers can run within VMs (eg on Cloud)

Containers need to interact with the host OS and are delivered as an image
Images are of a particular format and are generally configured from structured files

7

CONTAINERS VS VIRTUAL MACHINES

Host OS

Hypervisor

VM A

App A

Guest 
OS A

VM B

App B

Guest 
OS B

VM C

App C

Guest 
OS C

Host OS

Container Runtime

Root 
file 

system

Container 
1

App A App B

Container 
2

App C



Designed primarily for network micro-service virtualization 
Dockerfiles are the de-facto standard for defining images (recipe files)
Requires a daemon

Some issues with security daemon running as root
Within the container you have root privileges
This is OK if you are running within a VM that you own

Docker Hub is a service provided by Docker for finding and sharing container images 
(https://hub.docker.com/)

Over 100k container images from software vendors, open-source projects, and the 
community
Some examples:

AI frameworks: TensorFlow, Pytorch
Databases: MySQL, PostgresSQL

Use the available containers as base to build your own containers

8

DOCKER (HTTPS://WWW.DOCKER.COM/)

https://hub.docker.com/


• A technology to package and deploy software that runs with access to a limited set of host 
resources.

• Namespace kernel feature used to achieve isolation of resources

• Process/task tree local to container

• Private and imported filesystems

• Networking capability

• Containers can be packaged as an image.

• Container images are of a particular format and are generally configured from structured 
files (yaml for example). Often need to be root to create the image.

• We think of the running instance as a container

9

CONTAINERS IN MORE DETAIL



• Linux Namespaces are the core feature that isolates resources for containers

Proposed and Implemented namespaces (activated on clone, unshare, setns)

• Mount (mounts)

• UTS (hostname, domain)

• PID (Process Ids)

• NET (Network)

• RDMA

• IPC

• USER (user and groupid)

• Cgroup

• Time (clocks)

10

LINUX FEATURES THAT SUPPORT CONTAINERS



environment than in the host:

Own system and developer software stack

Own application software

11

CONTAINERS AND THEIR ENVIRONMENT

OS processes

container



Container can access files inside its image
Can also import outside paths
Some activities need access to particular files,  
device drivers, /etc etc, user setup
Singularity will provide /tmp, /proc, /sys, /dev, 
$HOME and $PWD

12

CONTAINERS AND THEIR ENVIRONMENT

//

//etc //usr //home //dev //bin //sys

//oleg

//proc //tmp

//

//etc //usr //home //dev //bin //sys

//oleg

//proc //tmp

Host OS

Container



Established in June 2015 by Docker and other leaders in the container industry, the OCI currently 
contains two specifications: 

The Runtime Specification
The Runtime specifies 5 must-have API calls: Create, Start, Kill, Delete, Query state

The Runtime Specification defines an interface to plug-in, or hook, external programs to customize the container 

The Image Specification
The goal of this specification is to enable the creation of interoperable tools for building, transporting, and preparing a 
container image to run

Building containers is still a per-system function

13

THE OPEN CONTAINER INITIATIVE (OCI)



14

CONTAINERS IN HPC



No ROOT access and deamon
No privilege escalation

Docker images compatibility (due to wide Docker adoption)
Integration with workload managers, e.g. SLURM and PBS
Support for diskless nodes, parallel filesystem friendly
Support for hardware-dependent performance optimization

Example 1: I compile my APP in the container on an AMD CPU with AVX2 vector instructions, then I run on an 
Intel CPU with AVX512 vector instructions

Example 2: I can compile my APP with MPI on an InfiniBand network, then I run on a HPE system with the 
Slingshot network

Support for vendor optimized libraries and tools, e.g. scientific libraries and compilers

15

HPC REQUERIMENTS



Containers are meant for portability and reproducibility
Built in a system, run anywhere (from your laptop to Clouds and 
Supercomputers)

Breaks portability

16

PORTABILITY & REPRODUCIBILITY VS PERFORMANCE

Performance Portability & Reproducibility



Building and executing:
Singularity, https://github.com/sylabs/singularity

Building containers, recipe file syntax not compatible with Docker

Singularity Image Format (SIF) for the images

Can run Docker images

Execute only (natively run Docker images):
CharlieCloud, https://github.com/hpc/charliecloud

Shifter, https://github.com/NERSC/shifter

Sarus, https://github.com/eth-cscs/sarus

Common features:
Can run Docker images (Open Container Initiative compliance)

Rootless execution

Still require root privileges for building

17

(SOME) HPC CONTAINER SOLUTIONS

Sarus @ CSCS

https://github.com/sylabs/singularity
https://github.com/hpc/charliecloud
https://github.com/NERSC/shifter
https://github.com/eth-cscs/sarus


Singularity launches the container as the calling user in the appropriate process context

There is no root daemon process and no escalation of privileges within the container

18

SINGULARITY VS DOCKER: PRIVILEGES DESIGN

Docker Singularity



19

SOME SINGULARITY COMMANDS

Description Command Details

Version singularity version

Help singularity -h

Help on a specific command singularity help <command>

Manage OCI containers sudo singularity oci <command> Open-Containers-Initiative (https://www.opencontainers.org/): 
standardize containers management

Run an image singularity run <image>

Pull and run an image from 
Dockerhub

singularity run docker://<image> E.g.: singularity run docker://godlovedc/lolcow

Exec a command within a 
container

singularity exec <image> <command>

Open a shell within a container singularity shell <image>

Build a SIF image sudo singularity build <name>.sif

<definition file>

Singularity-Image-Format: compressed read-only format suitable for 
production

Build a sandbox image sudo singularity build --sandbox 

<name> <definition file>

Writable (ch)root directory called a sandbox for interactive 
development

https://www.opencontainers.org/


Header part where we set the parent images, eg
Bootstrap: docker

From: debian:stretch

Sections, eg

20

SINGULARITY DEFINITION FILE PARTS

Name Short Description Docker Corresponding 
Command

%files Copies files from the host to the container, creates 

directories if needed

COPY

%environment Allows you to define environment variables that will be 

set at runtime. Overrides host variables

ENV

%post Executes commands during the building time RUN

%runscript Provides defaults for an executing container CMD



# Import parent image

Bootstrap: docker

From: debian:stretch

%files

# Create destination directory and copy the performance test

input.perf /workdir/dbcsr_bench/

21

DBCSR SINGULARITY EXAMPLE (1)



%post
# Install general packages
apt-get update && apt-get -y upgrade

apt-get -y install --no-install-recommends build-essential wget file git ca-certificates \

gfortran python libopenblas-dev && rm -rf /var/lib/apt/lists/*

# Install MPICH
export MPICH_VERSION=3.3.1

wget -q http://www.mpich.org/static/downloads/${MPICH_VERSION}/mpich-${MPICH_VERSION}.tar.gz

tar xf mpich-${MPICH_VERSION}.tar.gz && rm mpich-${MPICH_VERSION}.tar.gz

cd mpich-${MPICH_VERSION}

./configure --prefix=/usr/local --disable-static --disable-rpath --disable-wrapper-rpath \

--mandir=/usr/share/man --enable-fast=all,O3

make -j$(getconf _NPROCESSORS_ONLN) install && ldconfig && cd .. && rm -rf mpich-${MPICH_VERSION}

# Install latest cmake
export CMAKE_VERSION=3.15.3

wget https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/cmake-${CMAKE_VERSION}-Linux-x86_64.sh

sh cmake-${CMAKE_VERSION}-Linux-x86_64.sh --prefix=/usr/local --skip-license && ldconfig

rm -f cmake-${CMAKE_VERSION}-Linux-x86_64.sh

# Compile DBCSR (https://github.com/cp2k/dbcsr) and copy the performance test
cd /workdir/dbcsr_bench

git clone --recursive https://github.com/cp2k/dbcsr.git

cd dbcsr && mkdir build && cd build

cmake -DUSE_MPI=ON -DUSE_OPENMP=ON -DCMAKE_BUILD_TYPE=Release ..

make -j$(getconf _NPROCESSORS_ONLN) && cp -r tests/dbcsr_perf ../../ && cd ../../ && rm -rf dbcsr

22

DBCSR SINGULARITY EXAMPLE (2)



%environment

# Default values if the variable are not previously declared on the host

export NPROCS=${NPROCS:-1}

export OMP_NUM_THREADS=${OMP_NUM_THREADS:-1}

%runscript

# Default command, running inside the container

# singularity run <image_name>

# singularity exec <image_name> <command> 

mpirun -np ${NPROCS} /workdir/dbcsr_bench/dbcsr_perf \

/workdir/dbcsr_bench/input.perf

23

DBCSR SINGULARITY EXAMPLE (3)



An image can be a single file or it can be useful to build into a set of files within a directory called a 
sandbox

Typical way to build an image
➢sudo singularity build dbcsr.sif dbcsr.def

➢sudo singularity build --sandbox dbcsr.imgdir dbcsr.def

24

BUILDING THE IMAGE



SIF image can be directly executed
➢./dbcsr.sif

More in general
➢singularity run dbcsr.sif

➢singularity run dbcsr.imgdir

Setting MPI ranks and threads can be done on the host, e.g.
➢NPROCS=2 OMP_NUM_THREADS=2 singularity run dbcsr.sif

This is for running MPI inside the container, we will discuss how to run host MPI later on:
srun –n 2 singularity exec /workdir/dbcsr_bench/dbcsr_perf \

/workdir/dbcsr_bench/input.perf

25

RUNNING THE CONTAINER



All commands valid for SIF and Sandbox images

Execute a command, eg
➢singularity exec dbcsr.sif whoami

Open a shell
➢singularity shell dbcsr.sif

Notes
Same users between the host and the container

Singularity blocks privilege escalation, ie. no sudo inside the container

Same starting directory of the host

Some host directories automatically mounted (eg home directory)
Can use -B to bind more directories 

26

INTERACTING WITH THE CONTAINER



Challenge was to run a tool that needed python bindings for GTK+

This needs both
Installation of rpms

Installation of python modules

27

CONATINER FOR PYTHON3/GTK+



# python3 container for python GTK+
BootStrap: docker
From: python:latest

%labels
Author email@xxx.yyy
Version v0.0.1
Description python container python3 GTK+ scripts

%post
# Install the necessary packages (from repo)
apt-get update && apt-get install -y --no-install-recommends \
python3-numpy python3-gi python3-gi-cairo gir1.2-gtk-3.0 \
libcanberra-gtk3-module \
libgirepository1.0-dev gcc libcairo2-dev pkg-config python3-dev

apt-get clean

#Python packages
pip3 install numpy
pip3 install Pycairo
pip3 install PyGObject

28

CONATINER FOR PYTHON3/GTK+ (CONTAINER DEFINITION FILE)



mkdir -p /sv/

cat <<EOF >/sv/hello.py
import gi
gi.require_version("Gtk", "3.0")
from gi.repository import Gtk

window = Gtk.Window(title="GTK Example window")
window.show()
window.connect("destroy", Gtk.main_quit)
Gtk.main()
EOF
%environment
# Stop (most) dconf warnings
export DCONF_PROFILE=/tmp/disable_dconf

29

CONATINER FOR PYTHON3/GTK+ (CONTAINER DEFINITION FILE)



On build system

sudo singularity build python-gtk.sif python-gtk.def
singularity exec python-gtk.sif python3 /sv/hello.py

On deployment system

singularity exec python-gtk.sif python3 examples/icons.py

30

BUILD, TEST, USE



It can take a while to build a container and add packages to it, mistakes can be frustrating

You can base a container on another.

This example adds the IMB benchmark to a base container with MPICH installed

Bootstrap: localimage
From: mpich.sif

%post
export PATH=$PATH:/opt/mpich-3.3.2/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/mpich-3.3.2/lib

cd /tmp && wget https://github.com/intel/mpi-benchmarks/archive/IMB-v2019.6.tar.gz && tar 
zxvf IMB-v2019.6.tar.gz && cd mpi-benchmarks-IMB-v2019.6/src_c && make -j2 
TARGET=MPI1 && install IMB-MPI1 /usr/local/bin/IMB-MPI1

31

USING A BASE CONTAINER



You will need to set appropriate library paths and bind host paths into a container to do this

export SINGULARITYENV_LD_LIBRARY_PATH=/opt/cray/pe/mpich/8.0.16/ofi/gnu/9.1/lib-abi-
mpich:/opt/cray/pe/lib64:/opt/cray/pe:/opt/cray/libfabric/1.11.0.0.233/lib64:/usr/lib64

srun -n 128 singularity exec \

--bind /opt,/etc,/var,/usr/lib64 mpich-imb.sif /usr/local/bin/IMB-MPI1 PingPong > IMB.out.Sing

Importing /usr/lib64 is a lot but otherwise the bind list will be quite long.

32

USING THE ARCHER2 MPICH



Singularity requires Linux as the host system!
Use a virtualized Linux, eg VirtualBox (https://www.virtualbox.org/)

Recommended Vagrant to install and manage a minimal Linux box (https://www.vagrantup.com/)
Better to include also Vagrant Manager (http://vagrantmanager.com/) to manage Vagrant VMs

Require a Shell, eg Git Bash on Windows (https://git-for-windows.github.io/)

Install Singularity on the Linux VM

33

SINGULARITY INSTALLATION ON WINDOWS AND MACOS

https://www.virtualbox.org/
https://www.vagrantup.com/
http://vagrantmanager.com/
https://git-for-windows.github.io/


34

HPC IN CONTAINERS



Compile with MPI inside the container, compatible with the host MPI ABI implementation
Use shared library and disable RPATH to compile the executables

Replace the container MPI with the host libraries at runtime
Preappend host MPI library path to LD_LIBRARY_PATH

Example: run on a HPE Cray system with SLURM and Singularity
1. Build the container with a compatible MPI (either the same implementation or via ABI compatibility (MPICH))
2. Preappend host MPI library path to LD_LIBRARY_PATH

3. srun –n 2 singularity exec <myimage> ./myapp.x

as opposite of singularity exec <myimage> mpirun –np 2 ./myapp.x, which runs the 
bundled container MPI

35

HOST MPI



Make sure the Container-MPI is compatible with the Host-MPI
Do not mix MPICH and OpenMPI

Note that OpenMPI is the default in most of the Linux distributions

Host MPI library paths MUST be mounted within the container
Check with ldd command to see that you are linking the right libraries, e.g. Singularity with SLURM

srun –n 1 singularity exec <myimage> ldd ./myapp.x

Mounting host paths can introduce some conflicts with the container libraries, especially if standard paths are 
used (e.g. /lib, /var)

Make sure that glibc
ldd --version

36

HOST MPI CAVEATS (1)



Suggestion:

Check if MPI works with a small test application, eg Singularity with SLURM
Test application (example):
int main( int argc, char *argv[])

{

int myrank = -1, nranks = -1;

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank); MPI_Comm_size(MPI_COMM_WORLD, &nranks);

if (myrank == 0) printf("%d\n", nranks);

MPI_Finalize();

return 0;

}

Compile within the container (test.x)
Run via: srun –n 2 singularity exec <myimage> ./test.x

Check if the output value is correct (2 in this case)

Can bundle the test with the container

Prepare some base containers with specific MPI implementations to derive from (multistage build), eg MPICH and 

OpenMPI base container

37

HOST MPI CAVEATS (2)



Can use NVIDIA docker images as base images (https://hub.docker.com/r/nvidia/cuda/)

The driver libs are located on the host system and then bind mounted into the container at runtime
Can run the container on system with different versions of the NVIDIA driver 

CUDA library installed in your container must be compatible with both drivers

Use a simple test application, eg checking the number of available devices

Command line option to enable the GPU execution, e.g. --nv for Singularity
No input required from the user

Recently, Singularity (v3.5) introduced support for AMD GPUs & ROCm
The host has a working installation of the amdgpu driver, and a compatible version of the basic ROCm libraries

Install ROCm
Use the --rocm command line option

38

GPU EXECUTION

https://hub.docker.com/r/nvidia/cuda/


the container (neither fakeroot)
Must build on a system where you have such access (in practice, this is usually within a virtual 
machine on your laptop/workstation)

Cross-compilation when building the container for the specific target host

specific optimizations related to where you build the container

Can use dynamic dispatch, ie detect your CPU architecture (at runtime) and use 
the appropriate instruction set for that CPU

Intel MKL does that
Build several optimized executables and switch with an environment variable at runtime

Can build fat binaries, ie specify multiple instruction sets and embed in a 
single binary

39

OPTIMIZED COMPILATION



A multiple steps procedure (example based on Singularity)
Use case: I want to use tools from the container and mix with tools/libraries from the host

1. Build a base container on your root machine: 
sudo singularity build base.sif base.def

2. Copy the image to the host where you want to run

3. Mount the host directories of the libraries and tools within the container, e.g. vendor 
compilers and libraries, and open a shell:

singularity exec –B <mount points> base.sif /bin/bash --login

4. Compile your application against the host libraries and tools

5. Copy the compiled application to the root machine

6. Build a new container based on the previous base image and copy inside the compiled 
application

40

MIXING CONTAINER AND HOST LIBRARIES AND TOOLS



HPC Container Maker is an open-source tool to make it easier to generate container recipe files
https://github.com/NVIDIA/hpc-container-maker

Can generate Docker and Singularity recipe files from a high level Python script

Makes it easier to create HPC applications containers by using container best practices encapsulated in building blocks

Can easily generate specific recipe files by exploiting Python scripting, e.g.
Different base images

Different MPI implementations

Different optimizations

Example: Singularity container with MPICH
#!/usr/bin/env python3

import hpccm

from hpccm.building_blocks import mpich

from hpccm.primitives import baseimage

Stage0 = hpccm.Stage() 

Stage0 += baseimage(image=‘debian:buster’)

Stage0 += mpich(prefix='/opt/mpich/3.3.2', version=‘3.3.2’)

hpccm.config.set_container_format('singularity’) # Choose Singularity format

print(Stage0) # Write recipe file

41

GENERATING OPTIMIZED RECIPE FILES

https://github.com/NVIDIA/hpc-container-maker


You end up with multiple versions of the container with different optimizations, stored somewhere 
in an image registry

Various combinations of compilers, MPI implementations, Linux distributions...
E.g. {OpenMPI, MPICH} MPI implementations ✕ {AVX2, AV512} vector instructions ➔ 4 combinations
Proliferation of containers

How can we deploy the most appropriate container for your system?
Introducing MODAK

Developed within the SODALITE EU project by us (https://github.com/SODALITE-
EU/application-optimization)
Support HPC and Cloud systems

Still in a prototype phase

Simplify the management of the containers
Just like Environment Modules for a shell, MODAK does for containers

42

MANAGEMENT OF CONTAINERS: MODAK

https://github.com/SODALITE-EU/application-optimization


Expert: build the optimized containers 
and provide an optimization 
configuration DSL

CPU type

Specific libraries and configurations

MODAK stores the configuration in a 
database (MYSQL), push the container 
in the image registry, and tag the 
container with an ID

User: use MODAK to pull the specific 
optimized container on the system

Can get a batch submission script (e.g. 
SLURM)

43

MODAK WORKFLOW

Input DSL
Configuration

Container

MODAK
Image Registry

Configuration 
Database

Expert

Image/
Tag

User

MODAK

Job scripts

Configuration 
Database

Image Registry

Container



44

CONCLUSION



Out-of-the-box containers: portable and reproducible
Given the increased software complexity of emerging applications, there is 
a growing need for containerization within HPC

However, to get performance you have to specialize the containers
Breaks portability
Tradeoff between portability and performance

Presented some techniques to optimize your containers
No optimizations for free, need to work on the recipe files
Proliferation of optimized containers

HPC Container Maker to generate the multiple recipe files
MODAK as a solution to manage optimized containers

45

CONCLUSION



THANK YOU

harvey.richardson@hpe.com
alfio.lazzaro@hpe.com

46


