
	
	

	

Improving the performance of large-
scale simulations in DL_MONTE
	

Tom	L.	Underwood,	John	A.	Purton,	Tina	Düren,		Stephen	C.	Parker	
	

31/8/22	
	
	

Abstract	
	
DL_MONTE	is	a	general-purpose	program	for	simulating	atomistic	systems	via	
the	Monte	Carlo	(MC)	method.	We	have	made	various	improvements	to	this	
program	to	improve	its	capabilities	with	regards	to	large-scale	simulations,	i.e.	
simulations	of	systems	comprised	of	large	numbers	of	atoms	or	large	molecules;	
or	simulations	which	exploit	a	large	number	of	parallel	processes.	To	elaborate,	
we:	1)	implemented	the	cell	list	method	in	DL_MONTE,	to	improve	general	
performance	of	the	program	for	large	systems;	2)	implemented	a	method,	
continuous	fractional	component	MC,	to	enable	insertion	of	molecules	into	a	
system	during	simulations	–	something	routinely	employed	in	MC	studies	of	
adsorption	and	fluid	properties	–	in	situations	where	standard	approaches	are	
intractable,	e.g.	solutions	where	the	solvent	and	solute	molecules	have	a	large	
size	difference;	3)	made	general	improvements	to	the	performance	and	
scalability	of	the	MPI	parallelisation	in	DL_MONTE,	both	the	parallelisation	
invoked	in	DL_MONTE	to	speed	up	energy	calculations,	and	the	parallelisation	
utilised	by	DL_MONTE	to	simulate	multiple	copies	of	the	system	in	parallel	via	
the	replica	exchange	MC	method.	In	this	report	we	describe	these	improvements	
and	evaluate	the	performance	of	DL_MONTE	for	large-scale	simulations.	
	

1 Introduction	
Monte	Carlo	(MC)	[1]	is	a	powerful	technique	for	studying	condensed	matter	at	
the	atomic	scale.	In	MC	the	system	is	evolved	stochastically	to	sample	
configurations	at	thermodynamic	equilibrium.	One	pleasing	feature	of	MC	is	that	
there	is	considerable	freedom	to	tune	the	evolution	of	the	system	to	suit	the	
problem	at	hand;	unlike	molecular	dynamics	(MD)	[1],	the	evolution	need	not	be	
physical.	For	example,	grand-canonical	Monte	Carlo	(GCMC)	is	the	method	par	
excellence	for	studying	adsorption;	in	GCMC	the	molecules	are	inserted	into	and	
removed	from	the	system	during	a	simulation	[1].	MC	can	even	utilise	an	
extended	system	comprised	of	multiple	coupled	simulation	boxes	in	order	to	
solve	a	given	problem;	replica	exchange	Monte	Carlo	(REMC)	[2],	is	a	method	for	
efficiently	probing	many	temperatures,	pressures	or	chemical	potentials	
simultaneously	in	systems	with	rough	energy	landscapes,	by	simulating	multiple	
copies	of	the	system	(i.e.	replicas)	in	parallel.	
	

	
	

	
While	there	are	a	plethora	of	open	source	general-purpose	MD	codes	worldwide,	
there	are	only	a	few	such	MC	codes.	One	of	these	is	DL_MONTE	[3,4,5].	
DL_MONTE	supports	a	wide	range	of	MC	methods,	including	GCMC	and	REMC.	
Moreover,	it	has	a	versatile	force	field,	enabling	it	to	simulate	a	wide	range	of	
systems	including	inorganic	solids,	fluids,	and	molecular	crystals.	It	is	also	
accompanied	by	extensive	documentation	and	supporting	software	[5],	including	
a	Python	library	[6]	which	can	be	employed	to	build	complex	simulation	
workflows.	(All	releases	and	documentation	can	be	obtained	from	the	
DL_MONTE	GitLab	page	[5]).		
	
A	current	limitation	of	existing	MC	codes	is	that,	unlike	well-established	MD	
codes,	they	are	not	generally	geared	towards	large-scale	simulations,	i.e.	
simulations	of	systems	comprised	of	very	large	numbers	of	atoms,	large	
molecules,	complex	force	fields,	or	simulations	which	exploit	large	number	of	
parallel	processes	[7].	This	is	unfortunate,	because	there	are	many	problems	
which	would	benefit	from	a	general-purpose	MC	code	which	can	efficiently	
undertake	such	simulations.	
	
DL_MONTE	is	well	placed	to	become	such	a	code.	It	was	designed	from	the	outset	
for	HPC	applications,	supporting	parallelisation	via	MPI	to	improve	its	
performance.	Moreover,	it	has	been	shown	to	perform	favourably	when	
compared	to	other	general-purpose	MC	codes	for	‘realistic’	force	fields	[7,8].	
Motivated	by	this,	we	have	recently	undertaken	work	improve	DL_MONTE’s	
capabilities	with	regards	to	large-scale	simulations.	We	describe	this	work	here.	
	

2 Cell	lists	
The	first	improvement	to	DL_MONTE	we	will	describe	is	the	implementation	of	
the	cell	list	[1]	method	in	the	program,	with	the	aim	of	improving	the	general	
performance	of	the	program	for	large	systems.	
	

2.1 Improving	the	scaling	of	neighbour	list	set-up	
In	molecular	simulation,	for	short-range	interactions	pairs	of	atoms	only	interact	
if	they	are	within	a	certain	distance	rC,	known	as	the	cut-off,	of	each	other.	Thus	it	
is	standard	practice	to	employ	neighbour	lists	[1]	to	keep	track	of	which	atoms	
are	within	rC		of	each	atom	j.	The	advantage	of	this	is	that	when	calculating,	say,	
the	energy	of	j,	one	already	knows	which	atoms	to	consider	in	the	calculation.	
The	alternative	is	a	costly	search	performed	every	energy	calculation	over	the	
whole	system	for	atoms	within	rC		of	j.	For	a	system	comprised	of	N	atoms,	
neighbour	lists	reduce	the	computational	complexity	associated	with	performing	
such	an	energy	calculation	from	O(N)	to	O(1);	the	use	of	neighbour	lists	(or	
another	scheme	for	avoiding	system-wide	searches)	is	hence	essential	for	
simulating	systems	with	large	N.	
	
However,	there	is	a	cost	associated	with	setting	up	neighbour	lists,	an	operation	
done	frequently	during	a	simulation	(e.g.	at	the	outset	of	the	simulation,	and	
throughout	the	simulation	to	account	for	atoms’	shifting	positions).	The	simplest	
approach	for	determining	the	neighbour	list	for	a	given	atom	j	involves	a	brute-

	
	

	
force	search	over	the	N	atoms	to	determine	those	which	are	within	a	certain	
distance	Rnl=(rC+rV)	of	j,	where	rV	,	known	as	a	Verlet	shell,	is	a	small	distance	
added	to	rC		to	account	for	the	fact	that	atoms	could	move	to	withinrC	of	j	between	
neighbour	list	updates,	and	hence	it	is	insufficient	to	consider	only	atoms	within	
rC	of	j	in	constructing	the	list.	Thus	setting	up	neighbour	lists	for	all	atoms	is	an	
O(N2)	operation.		
	
For	DL_MONTE	the	O(N2)	scaling	associated	with	setting	up	the	neighbour	lists	
becomes	the	bottleneck	to	simulating	systems	with	very	large	N.	Cell	lists	[1]	
provide	a	means	for	eliminating	this	bottleneck.	In	the	cell	list	scheme	the	
system,	which	we	assume	here	for	simplicity	is	cubic,	is	divided	into	smaller	
cubic	cells	with	dimension	Rcell,,	and	each	cell	is	assigned	atoms	based	on	whether	
or	not	the	positions	of	the	atoms	reside	within	the	cell.	If	Rcell	is	chosen	to	be	
greater	than	Rnl,	then	for	an	atom	j	one	can	limit	the	search	for	atoms	to	add	to	j’s	
neighbour	list	to:	the	cell	to	which	j	belongs;	and	cells	adjoining	the	cell	in	which	
j	belongs.	By	localising	the	search	in	this	way,	the	complexity	of	setting	up	
neighbour	lists	for	all	atoms	reduces	from	O(N2)		to	O(N).		
	
We	have	implemented	this	scheme	in	DL_MONTE.	The	improvement	to	the	scaling	
can	be	seen	in	Figures	1a)	and	1b),	which	show	the	wall-clock	time	versus	N	for	
benchmark	simulations	designed	to	capture	the	performance	of	the	neighbour	list	
set	up.	These	simulations	consisted	of	initialisation,	including	initialisation	of	the	
neighbour	 lists,	 followed	 by	 two	 calculations	 of	 the	 total	 energy	 of	 the	 system	
using	the	neighbour	lists.	a)	corresponds	to	the	Lennard-Jones	(LJ)	[1]	solid,	and	
b)	to	fluorite	ceria	using	the	force	field	given	in	[9].(Input	files	for	the	simulations	
referred	 to	 in	 this	 report,	 and	 further	 technical	 details	 regarding	 these	
simulations,	 can	 be	 found	 at	 [5]).	 It	 is	 clear	 from	 these	 figures	 that	 the	 O(N2)	
scaling	borne	out	when	cell	lists	are	not	utilised	–	the	aforementioned	bottleneck	
for	simulating	systems	with	large	N	with	DL_MONTE	–	is	greatly	improved	upon	
by	 the	 use	 of	 cell	 lists,	 resulting	 in	 significant	 speed-ups	 in	 the	 benchmark	
simulations	for	large	systems.	For	instance,	the	speed-up	is	a	factor	of	≈30	for	the	
largest	system	we	considered	in	the	LJ	solid.	The	more	lacklustre	speed-up	of	≈2.3	
for	the	largest	ceria	system	reflects	the	fact	that	at	such	system	sizes	the	Coulomb	
energy	calculation,	which	scales	as	≈O(N1.5)	and	 is	unaffected	by	 the	use	of	cell	
lists,	dominates.	
	

	
	

	

	
Figure	1:		Scaling	of	various	benchmark	simulations	versus	system	size	(number	of	atoms,	N),	with	
and	without	the	use	of	cell	lists.		The	curves	show	the	gradients	which	correspond	to	O(N),	O(N3/2)	
and	O(N2)	scaling	with	N.	

	

2.2 Improving	the	scaling	of	GCMC	simulations	
As	 well	 as	 providing	 a	 means	 to	 improve	 the	 scaling	 associated	 with	 using	
neighbour	lists,	cell	lists	can	also	be	used	in	their	own	right	–	without	the	use	of	
neighbour	 lists	 –	 to	 locate	 atoms	 within	 j’s	 interaction	 range	 during	 energy	
calculations.	This	entails	choosing	the	dimensions	of	the	cells	to	be	Rcell	>	rC,	which	
ensures	 that	during	 a	 search	 for	 atoms	which	 interact	with	 j	 during	 an	 energy	
calculation	one	need	search	only	over	the	cells	adjacent	to,	and	including,	the	cell	
in	which	j	is	located.	This	approach	is	superior	when	neighbour	lists	would	have	
to	be	set	up	very	frequently	during	a	simulation.	One	important		situation	where	
this	is	the	case	is	GCMC,	where	neighbour	lists	would	have	to	be	set	up	every	time	
an	atom	is	inserted	or	deleted.	
	
We	have	implemented	this	scheme	in	DL_MONTE.	The	improvement	to	the	scaling	
can	be	seen	in	Figures	1c)	and	1d),	which	shows	the	wall-clock	time	versus	N	for	
benchmark	simulations	designed	to	measure	the	performance	of	GCMC.	Figures	
1c)	and	1d)	correspond,	 respectively,	 to	GCMC	simulations	 for	 the	LJ	 fluid,	and	
liquid	water	modelled	by	the	SPC/E	force	field	[10].	For	both,	the	wall-clock	times	
reflect	the	time	taken	to	perform	a	large	number	of	single-molecule	MC	moves:	
molecule	translations,	rotations,	 insertions	and	deletions.	 	 It	 is	clear	from	these	
figures	that	O(N)	scaling	is	borne	out	when	cell	lists	are	not	utilised,	and	that	the	
scaling	is	greatly	improved	by	the	use	of	cell	lists,	yielding	a	significant	speed-up	

	
	

	
for	large	N.	For	instance,	for	the	largest	systems	we	considered,	the	speed-up	was	
a	factor	of	≈9	for	the	LJ	fluid	and	≈6	for	SPC/E	water.	
	

3 Continuous	fractional	component	Monte	Carlo	
3.1 Overview	of	method	
In	GCMC,	insertion	moves	typically	entail	first	inserting	a	new	molecule	into	the	
system	at	a	random	position.	The	energy	of	the	inserted	molecule,	E,	is	then	
calculated.	Finally,	the	insertion	is	accepted	or	rejected	with	a	probability	which	
depends	on	E	and	certain	prescribed	thermodynamic	properties	of	the	system,	
namely	the	temperature,	T,	and	chemical	potential,	μ,	of	the	inserted	molecule.	
Crucially,	insertions	are	overwhelmingly	rejected	if	E	is	very	high,	and	the	system	
evolves	extremely	slowly.	This	is	troublesome	for	dense	systems	since	randomly-
chosen	insertion	positions	are	typically	‘on	top	of’	molecules	already	in	the	
system,	leading	to	high	E,	and	hence	low	rates	of	successful	insertions.	In	other	
words,	for	dense	systems	insertions	are	almost	always	rejected	on	account	of	the	
lack	of	‘cavities’	in	the	system	into	which	new	molecules	could	be	inserted	with	
low	E.	For	this	reason	GCMC	and	similar	methods	become	intractable	for	systems	
in	which	the	typical	cavity	size	is	much	smaller	than	the	size	of	the	molecules	to	
be	inserted.	
	
The	aforementioned	problem	has	been	long	recognised,	and	a	number	of	
methods,	which	we	refer	to	here	collectively	as	continuous	fractional	component	
MC	(CFCMC)	(see	[11]	for	a	recent	review	of	the	method),	have	been	developed	
to	address	it.	Consider	first	the	problem	of	inserting	only	one	new	molecule	j	into	
the	system.	In	CFCMC	a	quantity	λ	is	associated	with	j	which	specifies	the	
strength	of	the	interactions	between	j	and	the	rest	of	the	system.	λ=0	
corresponds	to	interactions	between	j	and	the	rest	of	the	system	being	‘switched	
off’:	j	is	in	effect	absent	from	the	system.	On	the	other	hand	λ=1	corresponds	to	j	
fully	interacting	with	the	rest	of	the	system:	j	is	included	in	the	system.	All	other	
values	of	λ,	i.e.	0<	λ<1,	correspond	to	j	partially	interacting	with	the	rest	of	the	
system	in	some	manner	which	depends	on	the	value	of	λ	–	something	we	
elaborate	on	later.		λ	thus	defines	a	pathway	which,	upon	moving	from	λ=0	to	
λ=1,	in	effect	results	in	molecule	j	being	inserted	into	to	the	system.	CFCMC	
involves	treating	λ	as	an	additional	degree	of	freedom	in	the	system,	and	
sampling	equilibrium	configurations	for	various	λ	in	the	range	λ=0–1.	To	
elaborate,	at	any	λ,	since	we	are	sampling	thermodynamic	equilibrium,	the	
positions	of	the	other	molecules	in	the	system	will	be	relaxed	around	molecule	j	
in	accordance	with	the	inter-molecular	interactions	between	j	and	the	rest	of	the	
system	corresponding	to	that	particular	λ.	Thus	as	λ	is	increased	from	0	to	1,	and	
j	is	gradually	inserted	into	the	system,	the	system	relaxes	to	accommodate	the	
new	molecule.	In	other	words,	by	gradually	inserting	j	in	this	manner	a	cavity	is	
created	‘naturally’	which	grows	with	j	until	j	is	inserted	into	the	system	fully	at	
λ=1.	Thus	the	problem	of	‘finding’	a	cavity	encountered	in	conventional	methods	
is	bypassed.		
	

	
	

	
We	have	implemented	CFCMC	in	DL_MONTE,	and	in	the	rest	of	this	section	we	
describe	this	functionality	in	more	detail,	and	conclude	with	an	example	
application	of	the	methodology.	
	

3.2 Defining	the	pathway	
One	has	considerable	freedom	choosing	how	j	interacts	with	the	rest	of	the	
system	for	0<	λ<1,	i.e.	the	choice	of	pathway.	However,	as	one	might	anticipate,	
the	choice	of	pathway	has	a	bearing	on	the	ease	with	which	j	can	be	inserted	into	
the	system.	With	this	in	mind,	there	are	standard	approaches	employed	in	the	
literature,	approaches	which	DL_MONTE’s	implementation	of	CFCMC	
accommodates.	We	now	elaborate	on	this.	
	
With	regards	to	short-range	(van	der	Waals)	interactions,	in	molecular	
simulation	the	most	commonly-employed	form	of	interaction	potential	between	
atoms	is	the	LJ	potential	[1].	Accordingly	there	is	a	λ-dependent	generalisation	of	
this	potential	which	has	found	standard	use	in	CFCMC	[11]:	

	
This	potential	becomes	the	LJ	potential	at	λ=1,	at	which	point	ε	and	σ	have	their	
usual	significance.	For	λ<1	the	potential	softens	as	λ	tends	to	0,	with	the	
parameters	a,	b,	c	and	α	controlling	the	exact	nature	of	the	softening.	At	λ=0	the	
potential	is	simply	0.	DL_MONTE	supports	this	potential	form	for	CFCMC,	
including	tail	corrections	[1].	
	
With	regards	to	Coulomb	interactions,	DL_MONTE	supports	λ-dependent	charges	
for	j:	the	charge	of	atom	k	in	molecule	j	can	be	specified	to	be	qk(λ)=λQk,	where	Qk	
is	the	‘true’	charge	of	k	when	j	is	fully	interacting	with	the	rest	of	the	system.	By	
allowing	the	charges	in	the	molecule	to	thus	scale	linearly	with	λ,	the	Coulomb	
interactions	with	the	rest	of	the	system	can	be	gradually	turned	on	as	λ	is	varied	
from	0	to	1.	
	
For	interatomic	potentials	comprised	of	both	short-range	and	Coulomb	
interactions	it	is	standard	practice	to	switch	on	the	short-range	interactions	
before	the	Coulomb	interactions	as	λ	is	increased	[11].	To	accommodate	this,	we	
first	define	a	value	of	λ	at	which	the	handover	from	the	short-range	interactions	
to	the	Coulomb	interactions	occurs,	λhandover.	We	then	define	separate	λ	quantities	
pertaining	to	each	type	of	interaction;	we	denote	the	λ	pertaining	to	the	short-
range	and	Coulomb	interactions	as	λsr	and	λC,	respectively.	Their	values	depend	
on	the	‘global’	λ	as	follows:	

• λ<λhandover	corresponds	to	the	range	of	λ	where	the	short-range	
interactions	are	switched	on:	λsr=0	at	λ=0,	increasing	to	λsr=1	at	
λ=λhandover.	Moreover,		λsr=1	for	λ>λhandover.	

• λ>λhandover	corresponds	to	the	range	of	λ	where	the	Coulomb	interactions	
are	switched	on:	λC=0	at	λ=λhandover	,	increasing	to	λC=1	at	λ=1.	Moreover,		
λsr=0	for	λ<λhandover.	

By	tuning	λhandover,	one	can	improve	the	efficiency	of	the	pathway.	

	
	

	
	

3.3 Sampling	the	pathway	
In	order	to	sample	configurations	with	different	λ,	MC	moves	which	vary	λ	must	
be	employed	alongside	conventional	MC	moves	(e.g.	atom	translation,	molecule	
translation	and	rotation,	volume	expansion/contraction).	One	has	considerable	
freedom	with	regards	to	the	form	of	such	‘λ	moves’,	and	different	problems	
require	different	types	of	λ	move	[11].	We	have	implemented	two	approaches	in	
DL_MONTE,	which	we	will	now	describe.	

Basic λ move
DL_MONTE	supports	discrete	values	of	λ;		λ	is	allowed	to	take	one	of	n	possible	
states	between	and	including	λ=0	and	λ=1.	Specifically,	the	ith	discrete	state	is	
λi=(i-1)∆λ,	where	∆λ=1/(n-1)	is	the	separation	in	λ	between	states.	Note	that	the	
first	and	nth	states	are	the	physical	states	λ1=0	and	λn=1.	With	this	in	mind,	the	
basic	λ	move	which	DL_MONTE	supports	attempts	to	change	λ	by	∓∆λ,	where	
moves	which	take	λ	below	0	or	above	1	are	rejected.		

Calculating chemical potentials
One	 application	 of	 this	 type	 of	 move	 is	 to	 calculate	 chemical	 potentials.	 To	
elaborate,	for	a	system	at	prescribed	temperature	T,	number	of	molecules	N,	and	
volume	V,	 the	chemical	potential,	μ,	 is	defined	as	 the	 free	energy	change	of	 the	
system	upon	adding	an	additional	molecule	to	the	system.	This	is	related	to	the	
free	energy	difference	between	the	λ=1	and	λ=0	states	in	the	above	pathway	via		

	
	

and	

	
where	μIG	 is	the	ideal	gas	chemical	potential	 for	the	system	–	which	is	a	known	
analytical	function	of	N,	V	and	T	–	and	μex	is	known	as	the	excess	chemical	potential.	
μex	can	be	calculated	by	using	the	aforementioned	basic	λ	moves	to	sample	all	λ	
states,	and	comparing	how	often	the	λ=0	and	λ=1	are	sampled.	In	this	manner,	the	
basic	λ	moves	enable	μ	to	be	calculated.	

Free energy methods
Often	the	pathway	parametrised	by	λ	exhibits	 free	energy	barriers	which	make	
movement	 between	 λ=0	 and	 λ=1	 very	 slow,	 in	 turn	 making	 an	 accurate	
determination	of	μex	intractable.	In	this	case	free	energy	methods	must	be	used	to	
accelerate	sampling	over	λ	to	enable	μex	to	be	calculated;	see	[4]	for	further	details	
regarding	free	energy	methods	with	regards	to	DL_MONTE.	DL_MONTE	supports	
a	wide	 range	 of	 free	 energy	methods	 [4]	 (e.g.	Wang-Landau,	 transition-matrix	
Monte	Carlo)	and	we	have	extended	DL_MONTE’s	free	energy	functionality	so	that	
these	methods	can	also	be	applied	to	sampling	over	λ.	We	demonstrate	the	use	of	
free	 energy	methods	 in	 conjunction	with	 basic	 λ	moves	 to	 calculate	 a	 μex	 in	 a	
moment.	

Insertion/deletion λ moves
The	other	type	of	λ	move	supported	in	DL_MONTE,	which	we	refer	to	as	an	
insertion/deletion	λ	move,	is	similar	to	the	basic	λ	move	describe	above,	except	

	
	

	
that	its	behaviour	is	different	if	the	move	takes	takes	λ	above1	or	below	0.	Let	us	
assume	that	the	system	is	currently	comprised	of	N	‘real’	molecules	and	1	
fractional	molecule,	j.	In	an	insertion/deletion	λ	move,	if	the	move	takes	λ	above	
1	then	the	fractional	molecule	j	is	‘promoted’	to	become	a	real	molecule,	and	a	
new	fractional	molecule	with	λ=0	is	inserted	into	the	system	at	a	random	
position.	Thus	the	move,	if	accepted,	yields	a	configuration	with	λ=0,	and	(N+1)	
real	molecules	and	1	fractional	molecule	in	the	system;	an	extra	molecule	has	
been	inserted.	Consider	now	what	happens	if	an	insertion/deletion	λ	move	takes	
λ	below	0.	In	this	case	the	fractional	molecule	j	is	deleted,	and	a	randomly-chosen	
real	molecule	is	‘demoted’	to	become	a	fractional	molecule	with	λ=1.	Thus	the	
move,	if	accepted,	yields	a	configuration	with	λ=1,	with	(N-1)	real	molecules	and	
1	fractional	molecule	in	the	system;	a	molecule	has	been	deleted.		
	
Insertion/deletion	λ	moves	enable	the	benefits	of	gradual	insertion	over	the	λ	
pathway	to	be	exploited	to	insert	multiple	molecules	into	the	system	analogously	
to	GCMC.	In	fact,	like	GCMC,	insertion/deletion	moves	are	accepted	with	a	
probability	which	reflects	the	energy	change	of	the	system	upon	
insertion/deletion,	as	well	as	the	prescribed	T	and	μ.		
	

3.4 Example	application:	SPC/E	water	
To	demonstrate	 and	validate	DL_MONTE’s	CFCMC	 functionality,	we	 considered	
the	SPC/E	water	model	in	the	liquid	phase	at	300K	and	the	saturation	pressure,	in	
a	 simulation	 box	 of	 volume	 8000Å3.	 Note	 that	 this	model	 contains	 both	 short-
range	(including	tail	corrections)	and	Coulomb	interactions,	making	it	an	ideal	test	
of	the	CFCMC	functionality.	First	we	calculated	μex	at	these	conditions	using	basic	
λ	moves	at	fixed	N,	V	and	T,	in	conjunction	with	free	energy	methods,	as	described	
above.	 Moreover,	 we	 considered	 two	 possible	 λ	 pathways:	 λhandover=0.5	 and	
λhandover=0.7.		The	free	energy	versus	λ	obtained	from	these	calculations	is	shown	
in	Figure	2	(red	and	blue	points).	Note	that,	as	expected,	[F(λ=1)-F(λ=0)]=μex	does	
not	 depend	 on	 the	 choice	 of	 pathway.	 Moreover,	 μex	 is	 in	 agreement	 with	 the	
literature	value	[12]	(dotted	line).	
	
We	also	simulated	this	system	at	fixed	μ,	V	and	T	using	λ	insertion/deletion	moves,	
again	 in	conjunction	with	 free	energy	methods,	 to	sample	different	numbers	of	
molecules,	N,	in	the	system.	A	trajectory	of	such	a	CFCMC	simulation	is	shown	in	
Figure	2	(inset,	green	curve).	Here,	(N+λ)	is	plotted	versus	number	of	MC	moves.	
Also	shown	for	comparison	is	N	versus	number	of	MC	moves	for	a	conventional	
GCMC	 simulation	 for	 the	 same	 system.	 The	 CFCMC	 simulation	 yields	
<N>=266.4(6),	which	 is	 in	agreement	with	the	GCMC	simulation	[267.4(5)]	and	
the	 literature	value	 [266.9(8)]	 [12].	Moreover,	 the	 free	 energy	profile	 ‘learned’	
during	the	simulation	to	apply	to	λ	moves	is	in	agreement	with	the	NVT	results,	as	
can	be	seen	in	the	figure	(black	points).	

	
	

	

	
Figure	2:	Results	 from	CFCMC	simulations	of	SPC/E	water	 in	 the	 liquid	phase	at	300K	and	 the	
saturation	pressure.	The	main	plot	shows	the	free	energy	versus	λ	obtained	from	various	CFCMC	
simulations,	along	with	the	literature	μex	from	[12].	The	inset	shows	(N+λ)	versus	number	of	MC	
moves	for	a	CFCMC	simulation,	and	N	versus	number	of	MC	moves	for	a	GCMC	simulation,	at	the	
aforementioned	conditions,	where	N	is	the	number	of	water	molecules	in	the	system.	
	

4 Parallelisation	performance	
MPI	parallelisation	can	be	employed	in	DL_MONTE	to	realise	a	speed-up	by	
reducing	the	wall-clock	time	associated	with	performing	energy	calculations.	
Moreover,	DL_MONTE	also	employs	MPI	parallelisation	during	simulations	
utilising	the	replica	exchange	Monte	Carlo	(REMC)	method.	REMC	[2]	entails	
simulating	multiple	replicas	of	the	system	at	different,	say,	temperatures,	
simultaneously,	while	occasionally	employing	a	replica	exchange	MC	move	to	
exchange	configurations	between	pairs	of	replicas	at	nearby	temperatures.	The	
benefit	of	this	approach	is	that	it	results	in	low-temperature	replicas	exploring	
configurations	which	would	take	a	very	long	time	to	sample	using	conventional	
methods.	
	
We	have	made	general	improvements	to	the	MPI	parallelisation	of	DL_MONTE,	
both	with	regards	to	energy	calculations	and	replica	exchange.	These	
improvements	included	reorganising	parallelised	loops	involved	in	energy	
calculations,	extending	parallelisation	to	the	new	cell	list	functionality,	and	
removing	bottlenecks	inhibiting	the	parallel	efficiency	of	the	program.		In	this	
section	we	provide	an	overview	of	the	parallelisation	set-up	in	DL_MONTE,	and	
quantify	the	performance	of	DL_MONTE	on	ARCHER	2	following	our	
improvements.	
	

	
	

	
4.1 Overview	of	parallelisation	set-up	
Key	components	of	the	energy	in	DL_MONTE	are	the	reciprocal	contribution	to	
the	Coulomb	energy,	Ere;	and	what	we	will	refer	to	here	as	the	two-body	energy,	
E2b,	which	is	comprised	of	the	short-range	‘van	der	Waals’	energy,	the	real-space	
component	of	the	Coulomb	energy,	and	the	energy	associated	with	intra-
molecular	bonds.	The	parallelisation	of	energy	calculations	in	DL_MONTE	
involves	employing	multiple	MPI	processes	to	speed-up	the	tasks	of	evaluating	
Ere	and	Etb.	Calculating	Erec	entails	summing	over	energy	contributions	from	a	
large	number	of	reciprocal	lattice	vectors.	To	parallelise	this,	DL_MONTE	
partitions	the	reciprocal	lattice	vectors	into	subsets,	and	assigns	the	component	
of	the	calculation	associated	with	each	subset	to	a	different	process.	After	each	
component	has	been	calculated,	Erec	is	obtained	by	summing	the	contributions	
from	each	process	via	an	MPI_ALLREDUCE.		
	
The	parallelisation	of	the	two-body	energy	calculation	is	more	complex.	
Calculating	E2b	entails	summing	over	energy	contributions	associated	with	many	
pairs	of	atoms.	To	parallelise	a	calculation	of	E2b,	DL_MONTE	will	partition	the	set	
of	atom	pairs	into	subsets,	and	different	MPI	processes	will	calculate	the	energy	
contribution	from	each	subset.	MPI_ALLREDUCE	is	then	used	to	sum	the	
contributions	from	all	subsets	to	obtain	E2b.	The	scheme	used	to	create	the	
subsets	depends	on	numerous	factors,	in	particular:		

• the	size	of	the	component	of	the	system	whose	energy	is	to	be	calculated,	
e.g.	atom,	molecule,	or	the	whole	system;	

• whether	or	not	cell	or	neighbour	lists	are	in	use;	
• whether	or	not	a	directive	‘paratom’	is	included	in	the	CONTROL	file:	this	

directive	changes	the	manner	in	which	atoms	involved	in	the	calculation	
are	assigned	to	different	processes.	

	
With	regards	to	REMC,	in	the	simplest	instance	DL_MONTE	would	employ	Nrep	
MPI	processes	to	simulate	the	Nrep	replicas	under	consideration	in	parallel	–	one	
process	per	replica.	In	this	case,	the	simulation	would	entail	all	replicas	
periodically	performing	replica	exchange	MC	moves	simultaneously.	During	
these	moves,	there	is	communication	between	processes	to	decide	which	pairs	of	
replicas	should	exchange	configurations.	Moreover,	there	is	transfer	of	
configuration	data	between	processes	involved	in	configuration	exchanges.	
These	MC	moves	are	performed	infrequently;	most	of	the	simulation	entails	
independent	evolution	of	the	replicas	by	their	respective	processes	via	
conventional	MC	moves	(e.g.	atom/molecule	translation,	volume	moves).	
	
It	is	also	possible	to	employ	REMC	in	conjunction	with	parallelisation	of	energy	
calculations.		In	this	case,	peng	processes	are	assigned	to	each	of	the	Nrep	replicas	
for	the	purposes	of	speeding	up	their	energy	calculations,	bringing	the	total	
number	of	processes	employed	in	the	REMC	simulation	to	Nreppeng.	
	

	
	

	
4.2 Performance	and	MPI	scaling	

Parallelisation of energy calculations
The	speed-up	of	various	benchmark	simulations	versus	number	of	MPI	processes	
peng	is	shown	in	Figure	3.	These	simulations	were	all	performed	on	ARCHER	2.	As	
mentioned	earlier	in	this	work,	an	MC	simulation	consists	of	evolving	the	system	
by	repeatedly	applying	various	types	of	MC	move.	Most	move	types	involve	
changing	the	degrees	of	freedom	associated	with	a	single	atom	or	molecule:	
atom/molecule	moves.	By	contrast,	volume	moves	involve	changing	the	entire	
system.		To	add	insight	into	the	scaling	of	volume	moves,	two	of	the	benchmark	
simulations	use	only	volume	moves:	these	benchmarks	are	labeled	‘vol.	moves’.	
The	remaining	benchmarks	use	only	atom/molecule	moves.	It	can	be	seen	from	
the	figure	that	the	simulations	which	use	only	volume	moves	scale	better	with	
number	of	MPI	processes	than	those	which	use	atom/molecule	moves.	This	
highlights	the	fact	that	it	is	atom/molecule	moves	which	are	the	bottleneck	to	the	
scalability	of	DL_MONTE:	the	maximum	possible	speed-up	we	observed	using		
atom/molecule	moves	was	a	factor	of	≈6	for	the	water	GCMC	benchmark	
simulation.	
	

	
Figure	3:	Speed-up	of	various	benchmark	DL_MONTE	simulations	versus	number	of	MPI	processes.	
	
The	reason	for	this	is	that	atom/molecule	moves	have	a	far	smaller	
computational	load	than	volume	moves	with	regards	to	their	energy	calculations,	
and	hence	they	more	quickly	reach	the	point	where	the	time	a	process	spends	
calculating	its	contribution	to	the	energy	becomes	comparable	to	the	time	spent	
communicating	between	processes	–	at	which	point	using	further	processes	is	
counterproductive.	Moreover,	because	the	computational	load	associated	with	
the	energy	calculation	is	smaller	than	that	of	the	volume	move,	the	serial	

	
	

	
overhead	associated	with	the	atom/molecule	move	(e.g.	generating	the	new	
position	of	the	molecule,	deciding	if	the	move	should	be	accepted)	is	a	greater	
fraction	of	the	CPU	time	than	for	the	volume	move.	This,	according	to	Amdahl’s	
law,	means	that	the	highest	possible	speed-up	for	atom/molecule	moves	will	be	
lower	than	for	volume	moves.	On	the	other	hand,	it	is	clear	from	the	above	
discussion	that	the	scalability	would	improve	if	the	computational	load	
associated	with	the	energy	calculation	in	atom/molecule	moves	were	to	increase.	
This	would	be	the	case	if,	for	instance,	the	interatomic	potentials	became	more	
costly	to	evaluate,	or,	for	the	case	of	molecule	moves,	the	number	of	atoms	in	the	
molecule	were	to	increase.	This	is	borne	out	in	Figure	3:	as	well	as	having	a	more	
costly	force	field,	the	SPC/E	water	has	more	atoms	per	molecule	than	the	LJ	solid,	
and	hence	yields	a	higher	maximal	speed-up.	Thus	we	would	expect	DL_MONTE	
to	scale	better	for	more	computationally	expensive	force	fields.	

Replica exchange Monte Carlo
Figure	3	suggests	that	using	more	than	≈30	MPI	processes	is	unlikely	to	yield	
further	speed-up	in	typical	DL_MONTE	simulations.	However,	the	prospect	still	
exists	to	exploit	large	numbers	of	processes	to	simulate	many	replicas	of	the	
system	simultaneously	via	REMC.	Figure	4	shows	the	wall-clock	times	for	
benchmark	REMC	simulations	versus	Nrep.	The	simulations	were	performed	on	
ARCHER	2,	and	all	utilised	the	same	number	of	MC	moves	per	replica.	Moreover,	
various	degrees	of	parallelisation	of	the	energy	calculations	within	the	replicas	
were	considered:		peng=1	(no	parallelisation),	2,	4	and	16.	Note	that	the	total	
number	of	processes,	peng	Nrep,	utilised	by	our	largest	simulation	is	10,240,	which	
corresponds	to	80	nodes	on	ARCHER	2.	
	
With	ideal	scaling	the	wall-clock	time	would	not	increase	with	Nrep	for	a	given	
peng.	Clearly	ideal	scaling	is	far	from	realised.	However,	the	loss	in	CPU	time	
associated	with	this	inefficiency	may	be	offest	by	the	improvement	in	sampling	
which	comes	from	employing	more	replicas	in	the	REMC	method.	Interestingly	
the	speed-up	in	the	atom/molecule	moves	which	comes	with	using,	say,	peng=16	
as	opposed	to	peng=1	holds	even	at	very	high	numbers	of	replicas.	It	is	therefore	
viable	to	employ	REMC	up	to	Nrep~1000,	even	in	conjunction	with	parallelisation	
of	the	energy	calculations.	
	

	
	

	

Figure	4:	Scaling	of	DL_MONTE	NVT	replica	exchange	Monte	Carlo	simulations	versus	number	of	
replicas,	for	different	numbers	of	processes	used	to	parallelise	the	energy	calculations	within	each	
replica.	Each	data	point	is	labeled	with	the	total	number	processes	the	simulation	utilised,	i.e.	peng	
Nrep.		
	

5 Summary	
We	have	made	various	improvements	to	the	general-purpose	Monte	Carlo	
simulation	program	DL_MONTE	to	facilitate	its	application	to	large-scale	
simulations,	i.e.	simulations	of	systems	comprised	of	large	numbers	of	atoms	or	
complex	molecules;	or	simulations	which	exploit	a	large	number	of	parallel	
processes.	The	improvements	we	made	are	as	follows.		
	
Firstly,	we	implemented	the	cell	list	method	in	DL_MONTE.	This	method	entails	
dividing	the	system	into	cells,	and	keeping	track	of	which	cell	each	atom	is	in	at	
all	times,	as	a	means	to	speed	up	searches	for	pairs	of	atoms	which	are	within	a	
certain	distance	of	each	other.	We	demonstrated	that	using	cell	lists	in	
DL_MONTE	yielded	significant	speed-ups	in	large	systems.		
	
Secondly,	we	implemented	the	continuous	fractional	component	Monte	Carlo	
method	in	DL_MONTE.	This	method	enables	insertion	of	molecules	into	the	
system	during	a	simulation	–	something	routinely	employed	in	Monte	Carlo	
simulation	studies	of	adsorption	and	fluid	properties	–	in	situations	where	
standard	approaches	are	intractable,	e.g.	solutions	in	which	the	solvent	and	
solute	molecules	have	a	large	size	difference.	We	demonstrated	and	validated	
this	new	functionality	by	applying	it	to	a	commonly-used	model	of	water.		
	
Finally,	we	made	general	improvements	to	the	performance	and	scalability	of	the	
MPI	parallelisation	in	DL_MONTE,	both	the	parallelisation	invoked	to	speed	up	

	
	

	
the	energy	calculations,	and	the	parallelisation	utilised	by	DL_MONTE	to	perform	
replica	exchange	Monte	Carlo	(REMC)	simulations	–	a	technique	in	which	many	
copies	of	the	system	are	simulated	in	parallel.	After	making	these	improvements,	
we	quantified	the	parallel	performance	of	DL_MONTE	on	ARCHER	2	for	a	range	
of	simulation	types.	One	notable	outcome	of	this	was	that	it	is	viable	to	invoke	
DL_MONTE	with	≈10,000	processes	to	simulate	≈1000	copies	of	the	system	via	
REMC.	This	paves	the	way	to	using	such	large	numbers	of	processes	to	solve	real-
world	problems	with	REMC	using	DL_MONTE.	
	
The	improvements	to	DL_MONTE	described	here	will	be	included	in	the	
forthcoming	release	of	DL_MONTE,	v2.08.	Further	details	on	how	to	obtain	the	
program,	as	well	as	other	documentation,	can	be	found	at	[5].	
	

References

[1]	B.	Smit	&	D.	Frenkel,	‘Understanding	Molecular	Simulation:	From	Algorithms	to	Applications’,	
London:	Academic	Press	(2002)	
[2] R. H. Swendsen & J.-S. Wang, Phys. Rev. Lett. 57, 2607 (1986)	
[3] J. A. Purton, J. C. Crabtree & Parker S C, Mol. Sim. 39, 1240 (2013)
[4] A. V. Brukhno et al., Mol. Sim. 47, 131 (2021)
[5] https://gitlab.com/dl_monte/
[6] T. L. Underwood et al., arXiv:2104.03822 [physics.comp-ph] 	
[7] R. J. Gowers, A. H. Farmahini, D. Friedrich & L. Sarkisov, Mol. Sim. 44, 309 (2018)
[8] Y. Nejahi et al., Software X 9, 20 (2019)	
[9] T. X. T. Sayle et al. Nanoscale 5, 6063 (2013)	
[10]	H.	J.	C.	Berendsen,	J.	R.	Grigera	&	T.	P.	Straatsma,	J.	Phys.	Chem.	91,	6269	(1987)	
[11]	A.	Rahbari	et	al.,	Mol.	Sim.	47,	804	(2021)	
[12]	https://www.nist.gov/mml/csd/informatics/sat-tmmc-liquid-vapor-coexistence-
properties-spce-water-lrc,	accessed	August	2022	
	

Acknowledgements
	
This	work	was	funded	under	the	embedded	CSE	programme	of	the	ARCHER2	UK	
National	Supercomputing	Service	(http://www.archer2.ac.uk).	This	work	also	
made	use	of	the	Balena	High	Performance	Computing	Service	at	the	University	of	
Bath.		
	
	

