
1

Developing a multiscale continuum framework for 
exascale computing of fluids with microstructure

Chrysovalantis Tsigginos1 and Charles Moulinec1

1Scientific Computing Department, STFC Daresbury Laboratory, Warrington WA4 4AD, United Kingdom

Abstract—A finite volume solver for micropolar fluids en-
titled CS_MICRO has been added within the framework of
Code_Saturne, an open-source CFD software. A PISO-type
algorithm was developed and implemented to handle the cou-
pling of the discretized pressure, linear momentum and angular
momentum equations of incompressible isotropic micropolar
fluids. Extensions of the developed algorithm to compressible
micropolar fluids and incompressible micropolar fluids with
free surfaces were also developed and implemented in the new
module. The new developments were validated against analytical
and numerical benchmark cases, including channel flows, two-
dimensional lid-driven cavity flows. Scalability tests conducted
on ARCHER2 indicate that the developed module retains the
excellent parallel performance of Code_Saturne.

I. INTRODUCTION

Many natural and industrial processes involve fluids
with microstructure, including but not limited to landslides,
avalanches, lateral spreading, blood flows with clots, polymers,
granular flows, liquid crystals, suspensions of rigid and/or
deformable particles and even turbulent flows. For the accurate
modeling of such fluids, the evolution of the microstructure
must be taken into account. Classical continuum theories
are unable to correctly predict the evolution of the material
microstructure. In contrast, atom-based methods can predict
the evolution of the microstructure with sufficient accuracy, but
the enormous number of atoms involved in the calculations,
typically in the order of trillions, renders those methods
prohibited for the simulation of industrial-scale problems even
on the largest existing supercomputers. Continuum theories
that introduce additional degrees of freedom to model the
evolution of the microstructure can bridge the gap between
the computational accuracy of atom-based methods and the
computational efficiency of continuum methods.

The simplest of such theories is the micropolar theory [3, 5]
which material points (i.e., rigid bodies) carry three extra rigid
directors (i.e., rotational degrees of freedom) in addition to the
translational degrees of freedom of the classical continuum
medium. The introduction of additional degrees of freedom
renders the micropolar theory an excellent platform for the
modeling of materials consisting of dumb-bell type molecules,
cylindrical elements and rigid bodies of various shapes. In that
regard, the micropolar theory can be applied to the modeling
of non-conventional fluids such as blood [11, 10], granular
fluids [12, 13], even flows with shear turbulence flows [15].

The significant increase in computational power witnessed
with the development of Petascale and, lately, of Exascale

systems has shifted the numerical modeling from being a veri-
fication tool of experimental procedures to a powerful tool that
can be used directly in the design of new materials/processes
or in the optimization of existing ones. Therefore, there is an
increased demand for open-source software optimized for high
performance systems. In that regard, Code_Saturne [1], an
open-source computational fluid dynamics software, optimized
for high performance systems [7] constitutes an ideal platform
for the development of numerical solvers of such complex
fluids.

The scope of this study is the development of an open-
source finite volume solver entitled CS-MICRO build within
Code_Saturne framework that solves the transport equations
of micropolar fluids which will also form the basis for further
developments within the continuum modeling of fluids with
microstructure.

II. MICROPOLAR THEORY

In the micropolar theory, the motion of matter is described
by a translational velocity, ui(x, t), and a rotational velocity
field, ωi(x, t), where x and t denote the spatial position and
time, respectively, and i stands for the ith component of each
vector and goes from 1 to 3 in 3-D. A second-order tensor,
Iij(x, t), the so-called microinertia tensor, is introduced to
model particle shape effects, where j goes from 1 to 3 in 3-D.

For the special case of a spin-isotropic micropolar fluid,
Iij(x, t) = Iδij (δij being the Kronecker symbol and I
is a constant), the transport equations are given below. The
conservation of mass maintains the same form as in classical
continuum theory:

∂ρ

∂t
+

∂ρui

∂xi
= 0 (1)

where ρ is the fluid density (Einstein’s convention applies
here).

The conservation of linear momentum has a similar form
to the conversation equation of classical fluids with the only
difference that now the second-order tensor, σd

ij which denotes
the viscous part of the stress tensor, σij = −pδij + σd

ij , is
asymmetric:

∂(ρui)

∂t
+

∂(ρujui)

∂xj
= − ∂p

∂xi
+

∂σd
ji

∂xj
+ f b

i (2)
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where p and f b
i are the pressure and the body force per unit

volume, respectively. The asymmetry of the stress tensor is due
to the different form of the balance of angular momentum:

∂(ρIωi)

∂t
+

∂(ρujIωi)

∂xj
= εijkσ

d
jk +

∂mji

∂xj
+ T b

i . (3)

The term mij denotes the so-called moment-stress tensor,
which for granular materials is linked to the moments devel-
oped at the contacts formed between adjacent particles [2].
The terms T b

i and εijk denote the body moments per unit
volume and the permutation symbol, respectively. Finally, the
energy balance for micropolar fluids takes the form

∂(ρe)

∂t
+

∂(ρuje)

∂xj
= −p

∂ui

∂xi
+ σd

ji

(
∂ui

∂xj
+ εijkωk

)
+mji

∂ωi

∂xj
+

∂qi
∂xi

.

(4)

where e and qi are the internal energy and heat flux vector,
respectively.

By taking into account that the internal energy can be
written in terms of enthalpy, h = e + p/ρ, and that the
increment of h is written as

dh = CpdT +
1

ρ
(1− βT ) dP (5)

where Cp is the heat capacity at constant pressure and β is
the thermal expansion coefficient:

β = −1

ρ

∂ρ

∂T

∣∣∣∣
ρ

, (6)

the conservation of energy can be written in terms of temper-
ature

Cp
(∂ρT )

∂t
+ Cp

∂(ρujT )

∂xj
= βT

(
∂p

∂t
+ ui

∂p

∂xi

)
+ σd

ji

(
∂ui

∂xj
+ εijkωk)

)
+mji

∂ωi

∂xj

(7)

which is the energy equation solved within CS-MICRO.
For spin isotropic micropolar fluids, the pressure and density

are related by an equation of the form

ρ = pΦ(I, T ) (8)

while the viscous part of the stress tensor is related to the
velocity and rotational velocity fields by [6]:

σd
ij = λvtr

∂uk

∂xk
δij + (µv + kv)

(
∂uj

∂xi
+ εjimωm

)
+ µv

(
∂ui

∂xj
+ εijmωm

)
.

(9)

The viscosity, µv , differs from the viscosity of a classical
fluid, unless the new viscosity, kv , is zero. The viscous part of
the stress tensor can be related to the classical fluid viscosity,
µ, [4]:

σd
ij = λv

∂uk

∂xk
δij + 2µεij − kv (Wij + εijmωm) (10)

where εij and Wij denote the rate of deformation and vorticity
tensors:

εij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
and Wij =

1

2

(
∂ui

∂xj
− ∂uj

∂xi

)
. (11)

and the viscosity µ is related to the viscosities µv and kv by
the equation µ = µv + 0.5kv .

For spin-isotropic micropolar fluids, the moment stress
tensor and heat flux are given by [6]:

mij = αv
∂ωr

∂xr
δij + βv

∂ωi

∂xj
+ γv

∂ωj

∂xi
+ αT εijm

∂T

∂xm
(12)

and
qk = K

∂T

∂xk
+ βT εkij

∂ωi

∂xj
. (13)

III. FINITE VOLUME FORMULATIONS FOR THE NUMERICAL
MODELING OF MICROPOLAR FLUIDS

A. Discrete transport equations of isotropic micropolar fluids

The discretized transport equations of a micropolar fluid
are presented in a symbolic form. Superscripts n and n + 1
indicate successive time levels, while the superscript n + θ
denotes an intermediate time level where the field values are
interpolated linearly from field values at levels n and n + 1.
For an isotropic compressible micropolar fluid, the discretized
transport equations can be written as follows:

ρn+1 − ρn

∆t
+∇iu

n+1
i = 0 (14a)

ρn+θ u
n+1
i − un

i

∆t
= H

(
un+θ
i

)
−∇ip

n+θ

+ Cω
(
ωn+θ
i

)
+ f bn+θ

i (14b)

ρn+θI
ωn+1
i − ωn

i

∆t
= H

(
ωn+θ
i

)
+ Sω

(
ωn+θ
i

)
+ Cu

(
un+θ
i

)
+ Cu(Tn+θ

i ) (14c)

ρn+θCp
Tn+1 − Tn

∆t
= HT

(
Tn+θ

)
+ Sω

(
Tn+θ

)
+ βn+θTn+θD

F (pn+θ)

Dt
+ Cω,u

(
ωn+θ, un+θ

)
. (14d)

The operator, H , denotes the finite volume representation
of convective and diffusive terms. The operator, ∇i, denotes
gradient calculations within the finite volume framework. The
operator, Cl, denotes operations related to the coupling of
the transport equation with another field, l. The operator,
Cl, may involve the finite volume operators of gradient, curl
and divergence. The term, Sk, denotes source-term operators
that appear in the transport equation of field k. The operator,
DF /Dt, denotes finite volume operations for the calculation
of the material time derivative. In CS_MICRO, the built-
in functionalities of Code_Saturne are used to compute the
various operators.
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A pressure equation can be derived by following the proce-
dure proposed by Issa [9]:

∇i∇ip
n+θ = ∇iH

∗(un+θ
i ) +

1

∆t
(ρui)

+
1

∆t2
(
ρn+1 − ρn

)
+∇iC

ω
(
ωn+θ

)
.

(15)

where H∗ is a finite volume operator for the convec-
tive/diffusive terms where convective terms are expressed in a
conservative form.

B. Incompressible micropolar fluid

In CS_MICRO, the coupling of the velocity, rotational
velocity and pressure fields is addressed by a sequential
process involving a series of correction-prediction steps. Let
the superscripts ∗, ∗∗, ∗ ∗ ∗ and ∗ ∗ ∗∗ denote intermediate
values obtained within the splitting process. Terms, a∗∗θ,
denote values of the field, a, computed at the intermediate
step, n+ θ, according to

a∗∗θ = θa∗∗ + (1− θ)an. (16)

(a) Velocity prediction: An estimate of the velocity field,
u∗
i , is obtained based on the pressure, pn−1+θ, and rotational

velocity, ωn computed at the previous timestep:

ρ
u∗
i − un

i

∆t
= H(u∗θ

i )−∇ip
n+1−θ + Cω(ωn

i ). (17)

The mass fluxes in operator, H , are computed based on un
i .

The velocity field, u∗
i does not satisfy the continuity.

(b) Velocity correction due to pressure: A new estimate of
the velocity field, u∗∗

i , and a new estimate of the pressure field,
p∗, are introduced in order for u∗∗

i to satisfy the continuity
equation, i.e., ∇iu

∗∗
i = 0:

ρ
u∗∗
i − un

i

∆t
= H(u∗θ

i )−∇ip
∗ + Cω(ωn

i ). (18)

By subtracting Eq. (17) from Eq. (18), the corrected velocity
is given in an explicit form:

u∗∗
i = u∗

i −
∆t

ρ
∇i

(
p∗ − pn−1+θ

)
. (19)

The corresponding pressure, p∗ is obtained by solving a
Poisson equation:

− ρ

∆t
∇iu

∗
i = −∇i∇i(p

∗ − pn−1+θ). (20)

New estimates of the mass fluxes at interior and boundary
faces are computed based on u∗∗

i .
(c) Rotational velocity prediction: A new estimate of the

rotational velocity field, ω∗
i is obtained by solving:

ρI
ω∗
i − ωn

i

∆t
= H(ω∗θ) + Sω(ω∗θ

i ) + Cu(u∗∗θ). (21)

(d) Second prediction of the velocity field: A new estimate
of the velocity field, u∗∗∗

i , is obtained due to the update of the
rotational velocity field, ω∗

i :

ρ
u∗∗∗
i − un

i

∆t
= H(u∗∗∗θ

i )−∇ip
∗∗ + Cω(ω∗θ

i ). (22)

For the case of constant viscosities, the operator Cω
i is

divergence free and the new velocity field, u∗∗∗
i , is solenoidal.

In contrast, for non-constant viscosities, the operator ∇iC
ω
i is

not zero, and an additional velocity-correction step is required
for the velocity field to satisfy the continuity equation.

(e) Second velocity correction due to pressure: For the
default treatment of the inhomogeneous case and to ensure that
the velocity field will satisfy a priori the continuity equation,
new estimates of the velocity, u∗∗∗∗

i , and pressure, p∗∗, fields
are obtained:

− ρ

∆t
∆u∗∗∗

i = −∇i∇i (p
∗∗ − p∗) (23a)

u∗∗∗∗
i = u∗∗∗

i − ∆t

ρ
∇i (p

∗∗ − p∗) . (23b)

The default strategy of the developed module for addressing
the coupling of the transport equations of incompressible
isotropic micropolar fluids is comprised of steps (a)-(e). In
that case, un+1

i is set to u∗∗∗∗
i . When significant nonlinearities

arise, the user has the option to perform multiple iterations
consisting of steps (a)-(e) or utilize a slightly modified iterative
scheme known as CS_MICRO_SIMPLEX, which involves an
additional set of predictions/corrections given by steps (c)-(d)-
(e) added after step (e). In that case the velocity field, pressure
field and rotational fields at n+ 1 are set accordingly.

It is important to note that step (d) of the default algorithm
and the second rotational velocity predictor of the augmented
scheme can be replaced with the explicit correction steps. After
several trials, we found that replacing Eq. (21) with its explicit
counterpart, severe limitations are introduced on the employed
timestep. Therefore, the associated transport equations are
treated implicitly to remove any timestep restriction.

C. Compressible micropolar fluids

As our primary focus is the modeling of large-scale indus-
trial granular flows, a low Mach number compressible solver is
developed. For simplicity, an equation of state given by Eq. (8)
is considered. The iterative process within a single time step
is outlined next.

(a) Velocity prediction: An estimate of the velocity field,
u∗
i , is obtained based on the pressure and rotational velocity

fields of the previous step:

ρn
u∗
i − un

i

∆t
= H(u∗θ

i )−∇ip
n−1+θ + Cω(ωn) (24)

The intermediate velocity, u∗
i , does not satisfy the continuity

equation.
(b) Velocity correction due to pressure: A new estimate of

the velocity field, u∗∗
i , and a new estimate of the pressure

field, p∗, are introduced as the velocity field, u∗∗
i , to satisfy

the continuity equation:

u∗∗ =
∆t

ρ∗θ

[(
ρ∗θ − ρn

) un
i

∆t
+

ρnu∗
i

∆t

− ∇i(p
∗ − pn−1+θ)

]
.

(25)

and∑
f

m∗ =
∑
f

ρ∗∆t

ρ∗θ
Sf∇i(p

∗ − pn)− CρVc

∆t
(p∗ − pn) (26)
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where m∗ denotes the mass flux computed at interface f
based on u∗

i and ρn. The term Cρ is defined as ∂ρ/∂p. The
new density, ρ∗, is computed from the equation of state for
(Tn, p∗).

(c) Prediction of the rotational velocity: When dealing with
non-uniform thermal viscosities, the moment stress tensor
becomes dependent on temperature variations. As a result, we
seek an intermediate rotational velocity field, ω∗

i , by setting
un+1
i → u∗∗

i and Tn+1 → Tn:

ρ∗θI
ω∗
i − ωn

i

∆t
= H(ω∗θ

i ) + Sω(ω∗θ
i ) + Cu(u∗∗θ

i )

+ CT (Tn
i ).

(27)

(d) Temperature prediction: An estimate of temperature,
T ∗, is obtained based on the previous estimates of density,
pressure, velocity and rotational velocity (ρ∗, p∗, u∗∗

i , ω∗
i ):

ρ∗Cp
T ∗ − Tn

∆
= H(T ∗θ

i ) + βT ∗θD
F (p∗)

Dt
+ Cω,u(ω∗

i , u
∗∗
i ) + Sω(Tn)

(28)

where the term Sω denotes source terms that arise due to
thermal moments. The non-linear form of Sω(T ) prevents any
implicit treatment of the source term.

(e) Correction of the rotational velocity field due to the
temperature field: This correction step is necessary only when
dealing with inhomogeneous thermal gyroviscosities. In this
case, a new estimate of the rotational velocity field, ω∗∗

i is
determined by setting un+1

i → u∗∗
i and Tn+1 → T ∗:

ρ∗θI
ω∗∗
i − ω∗

∆t
= H(ω∗∗θ

i ) + Cu(u∗∗
i )

+ CT (T ∗) + Sω(ω∗∗θ
i )

(29)

(f) Second velocity prediction step: A new estimate of the
velocity field, u∗∗∗

i , is obtained due to the updated rotational
velocity field, ω∗∗

i :

ρ∗θ
u∗∗∗
i − un

i

∆t
= H(u∗∗∗θ

i )−∇ip
∗ + Cω(ω∗∗θ

i ). (30)

(g) Correction of the velocity field and calculation of a
new pressure field: As, u∗∗∗

i , does not satisfy the continuity
equation, a new velocity, u∗∗∗∗

i , that satisfies the continuity
equation, and a new pressure field, p∗∗ are obtained:

u∗∗∗∗ =
∆t

ρ∗∗θ

[
(ρ∗∗θ − ρ∗θ)

un
i

∆t
+

ρ∗θu∗
i

∆t
−∇i (p

∗∗ − p∗)

]
(31)

and
ρx − ρn

∆t
Vc +

∑
f

m∗ =
∑
f

ρ∗∆t

ρ∗θ
∇i(p

∗ − pn)

− CρVc

∆t
(p∗∗ − pn) .

(32)

The new density field, ρ∗∗ is given by

ρ∗∗ = p∗Φ(J, T ∗)+Cρ(p
∗∗−p∗) = ρx+Cρ(p

∗∗−p∗). (33)

For incompressible flows involving non-homogeneous
thermo-viscosities, the above iteration strategy is used also to
address the thermo-rotational coupling. The only difference

between these two iterative strategies is that for the latter
the fluid density is constant. In case of constant, thermo-
viscosities, the thermal and angular momentum equations
are not coupled and the energy equation is treated as an
independent equation.

D. Volume of fluid method

1) Governing equations: In the volume of fluid method,
the two fluids are modeled as a single entity, both obeying the
same set of governing equations. The two fluids are identified
locally by the void fraction, i.e. the percentage of the unit
volume occupied by the given fluid [16]. For an incompressible
isotropic micropolar fluid, the governing equations take the
form:

∂ui

∂xi
= 0 (34a)

∂(ρui)

∂t
+

∂(ρuiuj)

∂xj
= − ∂p

∂xi
+

∂σji

∂xj
+ fσ

i (34b)

∂(ρIωi)

∂t
+

∂(ρIuj)ωi

∂xj
= εijkσjk +

∂mji

∂xj
+ Tσ

i (34c)

where fσ
i and Tσ

i represent the force and moments resulting
from surface tractions and surface moments, respectively.
Herein, we assume that fσ

i and Tσ
i are both zero. The local

density, microinertia, viscosities and gyroviscosities are given
by:

ρ = ερ1 + (1− ε)ρ2 (35a)
ρI = ερ1I1 + (1− ε)ρ2I2 (35b)
µv = εµv1 + (1− ε)µv2 (35c)
kv = εkv1 + (1− ε)kv2 (35d)
βv = εβv1 + (1− ε)βv2 (35e)
γv = εγv1 + (1− ε)γv2 (35f)

where subsripts 1 and 2 denote different fluids and ε rep-
resents the void fraction of fluid 1. In the current iteration,
fluid 1 partakes only constant material properties. Lastly, the
transport equation of the void fraction is

∂ε

∂t
+

∂(εui)

∂xi
= 0. (36)

2) Finite volume discretization: Next, we outline the nu-
merical scheme for solving the transport equations of microp-
olar fluids with free surfaces.

(a) Volume fraction prediction: The discretized form of the
transport equation of the volume fraction is solved first to
obtain an estimate of the void fraction field, ε∗:

ε∗ − εn

∆t
+∇i(ε

∗θun
i ) = 0. (37)

The method proposed in [16] is used to handle the con-
vective term in Eq. (37). Clipping is used to limit the void
fraction in the range of [0, 1]. Moreover, new estimates of
the mass fluxes, m∗, microinertia, I∗, fluid density, ρ∗, and
viscosities consistent with the new estimate of the void fraction
are obtained based on Eqs. (35).
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(b) Velocity prediction: An estimate of the velocity field,
u∗
i , is obtained by setting pn+θ → pn, ωn+1

i → ωn
i :

ρ∗θ
u∗
i − un

i

∆t
= H(u∗θ

i )−∇ip
n−1+θ + Cω(ωn

i ). (38)

(c) Velocity correction due to pressure: A new estimate of
the velocity field, u∗

i , does not satisfy the continuity equation.
Hence, new pressure, p∗, and velocity, u∗∗

i , estimates are
needed in order for the velocity field to satisfy the continuity
constrain at n+1. The velocity field, u∗∗

i , satisfies the transport
equation:

ρ∗θ
u∗∗
i − un

i

∆t
= H(u∗θ

i )−∇ip
∗ + Cω(ωn

i ). (39)

By taking the difference of the divergence of Eqs. (38)
and (39) and taking into account that the velocity field, u∗∗

i ,
satisfies the continuity equation, we get:

−∇i

[
∆t

ρ∗θ
∇i(p

∗
i − pni )

]
= −∇iu

∗
i . (40)

The mass fluxes are reconstructed from estimates of the
density, ρ∗, and velocity, u∗∗

i , fields with the latter to be given
by

u∗∗
i = u∗

i −
∆t

ρ∗θ
∇i (p

∗ − pn) . (41)

(d) Prediction of the rotational velocity field: A new estimate
of the rotational velocity field, ω∗

i , due to the corrected velocity
field, u∗∗

i , is obtained by solving the following transport
equation:

ρ∗θI∗θ
ω∗
i − ωn

i

∆t
= H(ω∗θ

i ) + Cu(u∗∗θ
i ) + Sω(ω∗θ

i ). (42)

(e) Update of the volume fraction: A new estimate of the
volume fraction, ε∗∗, is obtained by solving the transport
equation

ε∗∗ − εn

∆t
+∇i(ε

∗∗θu∗∗θ
i ) = 0. (43)

Then, new estimates of the mass flux, fluid density, ρ∗∗,
microinertia, I∗∗ and fluid viscosities and gyroviscosities are
obtained from Eq. (35) based on ε∗∗.

(f) Velocity prediction: A new velocity field, u∗∗∗
i is ob-

tained by solving implicitly the following transport equation:

ρ∗∗θ
u∗∗∗
i − un

i

∆t
= H(u∗∗∗θ

i )−∇ip
∗ + Cω(ω∗

i ). (44)

(g) Velocity and pressure correction: As the new prediction
velocity field, u∗∗∗

i does not satisfy the continuity equation,
a new estimate of the velocity that satisfy the momentum
equation must be obtained. The corrected velocity field, u∗∗∗∗

i ,
satisfies the momentum equation

ρ∗∗θ
u∗∗∗∗
i − un

i

∆t
= H(u∗∗∗θ

i )−∇ip
∗∗ + Cω(ω∗θ

i ). (45)

Then, the new pressure field is given by

−∇i

[
∆t

ρ∗∗θ
∇i(p

∗∗
i − p∗i )

]
= −∇iu

∗∗∗
i . (46)

and the corrected velocity is computed explicitly by

u∗∗∗∗
i = u∗∗∗

i − ∆t

ρ∗∗θ
∇i (p

∗∗ − pn) . (47)

IV. IMPLEMENTATION TO CODE_SATURNE

Code_Saturne is a co-located finite volume method solver
that accepts three-dimensional meshes built with any type of
cell (tetrahedral, hexahedral, prismatic, pyramidal, polyhedral)
and any type of mesh structure (unstructured, block-structured,
hybrid). The variables to be solved are stored as field objects
(cs_field_t) encapsulating the discrete field data and the
associated boundary conditions. Code_Saturne comes with
build-in functions for calculating the gradient and divergence
operators. In addition, Code_Saturne can exploit different
partition techniques for domain decomposition. Moreover, the
code provides parallel I/O functionality for writing and reading
data from disks, functionality that has become increasingly
important for codes that use high-end computing resources [7].

A. Structure of the solver

In CS-MICRO, the data fields and solving procedures are
organized as follows. The main structure of the developed
module is the cs_micro_system_t structure, that encap-
sulates all structures and functions (pointer functions) that
are required to solve different sets of transport equations
as described in Sec. III. The cs_micro_fields_t con-
tains all cs_fields_t structures activated by CS-MICRO.
Following, the Code_Saturne terminology, the fields are di-
vided into variable and property fields. Variable fields are
updated by solving the transport equations, while property
fields are computed via an extension of the cs_xdef_t
mechanism to the finite volume formulation of Code_Saturne
which is currently only used in the cdo module. The structure
cs_micro_param_t contains all the information required
for the calculation of the boundary, initial conditions and the
calculation of the constitutive laws of micropolar fluids.Due
to the similar structure of the discrete linear momentum,
angular momentum and energy equations, CS-MICRO exploits
cs_micro_equation_t structures to form and solve each
transport equation. The cs_micro_equation_t struc-
ture contains all the elements that are necessary to handle
the prediction (cs_micro_predictor_t) and correction
(cs_micro_correction_t) steps of each transport equa-
tion, see Section III, as well as the procedures to handle the
solution of the non-linear equation.

The functions of the predictors of the velocity and rotational
velocity are quite similar to the predv function of the Navier-
Stokes solver of Code_Saturne. The main difference is that
in CS-MICRO, the coupling, C, and source S operators
are treated by distinct functions. In addition, the convec-
tion/diffusion operator, H , is computed in each step of the
iterative process used to solve the non-linear system obtained
from the discretization of the transport equations.

B. Implementation of the boundary conditions

The mascoscopic fields have to be specified and be consis-
tent with the type of the physical boundaries. CS-MICRO cur-
rently supports inlet, outlet, and wall boundary conditions. The
information, i.e., boundary type, prescribed values, boundary
zones, are stored and handled by the cs_micro_param_t
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structure. The treatment of the boundary conditions within CS-
MICRO is similar to the treatment of the boundary conditions
in the legacy part of Code_Saturne. Details regarding the
treatment of boundary conditions within Code_Saturne can be
found in [14].

Next we briefly described the various types of boundary
conditions of CS_MICRO

• Inlet: Dirichlet conditions are used for the velocity, ro-
tational velocity and any scalar field while the normal
component of the pressure gradient is set to zero.

• Outlet: Homogeneous Neumann conditions are applied to
velocity, rotational and scalar fields while the pressure is
set to a fixed value, pout, prescribed by the user.

• Wall: For the pressure field, a zero pressure gradient
is enforced. For the velocity field, a zero mass flux, is
assigned normal to the boundary, while for the tangential
component the boundary conditions are of homogeneous
Dirichlet type. For scalar fields, Dirichlet and Neumann
boundary conditions can be used. For the rotational
velocity field, the no-spin or a more general boundary
condition that generates some slipping at the interface
can also be used. At the same time, the user can use
analytic functions to prescribe the tangential component
of the velocity field at a given wall.

• Symmetry: For the velocity field, it corresponds to a ho-
mogeneous Dirichlet condition for the component normal
to the symmetry plane and a homogeneous Neumann
condition for the tangential component. For the rotational
field, the symmetry condition corresponds to the enforce-
ment of antisymmetric boundary conditions. In particular,
a homogeneous Neumann condition is imposed on the
component of the rotational velocity field normal to the
symmetry plane and a homogeneous Dirichlet for the
component tangent to the symmetry plane. For scalar
fields, the symmetry conditions correspond to homoge-
neous Neumann boundary conditions.

The boundary conditions are updated at the beginning of
each step based on prescribed values, except for the case of
partial-slipping where the boundary condition for the rotational
velocity field is recomputed prior to the rotational velocity
prediction/correction step. In this case, the rotational velocity
is given by

ωk = αΩk (48)

where Ωk is the vorticity field defined as Ωk = εijkuk,j ,
and α a parameter that takes values in the region [−1/2, 0],
with the values −1/2 and 0 denoting slipping and adherence
conditions, respectively.

C. Domain decomposition and MPI parallel communications

CS-MICRO similar to Code_Saturne adapts a brick-type
domain decomposition approach for the partition of the simu-
lation domain to multiple subdomains with each cell belonging
to a unique domain that is assigned to a unique process. For
the domain partition, CS-MICRO can make use of all the avail-
able tools included in Code_Saturne, e.g., ParMETIS/METIS,
Morton-based based space-filling curves and Hilbrert type

curves [7]. Intrasolver communications are treated based on
the concept of halo cells, (creating a copy of cells that are
adjacent to the sub-domain boundaries). The communications
between adjacent processes are handled by the build-in MPI
functionalities.

V. BENCHMARK TESTS

Three benchmark cases are considered for the validation of
the developed module, including channel flow, Couette flow
and two-dimensional cavity flows.

A. Couette flow

As a first verification case, we consider the flow of a
micropolar fluid confined between two plates positioned at
distance 2α = 1m apart. The top wall is moving with velocity,
uw = 10−7m/s, while the bottom wall remains stationary. The
particles are assumed to adhere to the wall surfaces which at
the macroscale is equivalent to the no-spin boundary condition,
i.e., ωz(±a) = 0. To account for the special characteristics of
the flow, periodic boundary conditions are applied in the x−
and z− directions and the simulation domain is reduced into a
single column. A grid of 95 elements is used to mesh the fluid
column. The viscosity and gyroviscosity of the micropolar
fluid are set to 10−3Pa · s and 6 · 10−7Pa ·m · s, respectively,
while different values of the ratio kv/µ are considered to
assess the coupling of the translational and rotational modes.
The outcome of the finite volume simulations are compared
with the analytical solution of Cowin [4], see Figs. 1a and
1b. Both figures demonstrate a remarkable agreement between
the velocities obtained from the finite volume simulations
and those obtained from the analytical solution. In Fig. 2,
the non-zero components of the stress tensor obtained from
the finite volume simulations is compared with the those
obtained from the analytical solution. A remarkable agreement
between analytical and finite volume results is observed with
the difference between the two stress components to decrease
as the ratio, kv/µ, tends to zero.

B. Channel flow

As a second benchmark case, we consider the flow in a
channel driven by a constant pressure gradient while the top
and bottom wall, spaced 2α apart remain stationary. For small
Reynolds, the particular flow is amenable to an analytical
solution [5].

For assessing the performance of the current developments,
we model the two-dimensional channel as a one-dimensional
column of height 2α = 1.0m. Periodic boundary conditions
are imposed on the faces normal to the flow. Micropolar fluids
with µv and γv coefficients equal to 10−4Pa·s and 610−5N ·s
and ratios of kv/µv equal to {0, 0.1, 0.5, 1} were considered.
The density and microinertia of the various micropolar fluids
are set to 1kg/m3 and 10−6m2, respectively. For all cases,
a pressure gradient equal to 3.2 · 10−8Pa/m is applied to
the fluid. A grid of 19 elements is used to mesh the one-
dimensional column.

The horizontal and rotational velocity profiles obtained
from the numerical simulations are plotted in Fig. 3. For
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Fig. 1. (a) Velocities and (b) rotational velocities for a Couette flow of micropolar fluids with different values of the ratio kv/µ. The symbols indicate finite
volume data and the lines represent the analytical solution given in Cowin [4].

0.8 1 1.2 1.4 1.6 1.8

2  
21

/(  u
w

)

-1

-0.5

0

0.5

1

y
/

k
v
/  = 2.0

k
v
/  = 1.0

k
v
/  = 0.2

k
v
/  = 0.

k
v
/  = 2.0 (Cowin 1974)

k
v
/  = 1.0 (Cowin 1974)

k
v
/  = 0.2 (Cowin 1974)

k
v
/  = 0. (Cowin 1974)

0 0.2 0.4 0.6 0.8 1 1.2

2  
12

/(  u
w

)

-1

-0.5

0

0.5

1

y
/

(a) (b)

Fig. 2. (a) σ21 and σ12 for a Couette flow of micropolar fluids with different values of the ratio kv/µ. The symbols indicate finite volume data and the
lines represent the analytical solution given in Cowin [4]).

comparison purposes, the velocity and rotational velocities
obtained from the analytical solution are also included in the
figure. A remarkably good agreement between the analyti-
cally and numerically obtained velocity profiles is observed
independently of the ratio kv/µv . Both methods indicate that
micropolar fluids experience a "stiffer" response than classical
fluids accompanied by larger values of ωzα/uc as the ratio
kv/µv increases. In addition, the location of the maximum
rotational velocity moves towards the walls as the ratio kv/µv

increases.

For the further evaluation of the developed module, we
consider the flow of a micropolar fluid in a channel of length
60m and height 2m. At the inlet, a constant velocity uo

of 10−6m/s and a zero rotational velocity are prescribed,
while at the outlet, Neumann-type boundary conditions are
set for both the translational and rotational velocities. The
no-slip and no-spin boundary conditions are enforced at the
top at bottom walls. We consider two micropolar fluids with

µv = 510−4Pa · s and kv/µv ratios of 0 and 2, respectively.
For both fluids, the gyrovisocisity coefficients are set to
610−7N · s while the fluid density and microinertia are equal
to 1kg/m3 and 3 · 10−10m2, respectively. Due to the specific
flow characteristics, we will refer to the micropolar fluid with
a kv/µv = 0 as classical fluid, while the micropolar fluid
with the ratio kv/µv = 2 is referred as micropolar fluid.
A structured grid of 24000 cells is used to mesh the two-
dimensional channel. For the micropolar fluid, Poiseuille flow
conditions (constant pressure gradient and parabolic velocity
profile) are et at a distance 2.75m from the inlet, while for
the classical fluid, Poiseuille flow conditions were developed
at a distance 2.85m from the inlet. The measured pressure
gradients were 3.099 · 10−9 for the micropolar fluid and
1.5 · 10−9 for the classical fluid. The horizontal velocity and
rotational velocity profiles found at a distance of 50m from
the inlet are compared with the profiles obtained from the
analytical solution for the uniform pressure gradients reported
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Fig. 3. (a) Velocities and rotational velocities for a Poisseuille flow of micropolar fluids with different values of the ratio kv/µv . Symbols indicate finite
volume data for a one-dimensional mesh of grid size ∆x = 1/19. Lines represent the analytical solution given by Eringen [5].

for each case. An excellent agreement between numerical and
analytically obtained profiles is observed, Fig. 4.

C. Cavity flows

As a third verification case, we consider lid cavity flows
which have been widely used in the validation of CFD
solvers [18, 17]. Specifically, a square cavity of height H =
1m is considered. A uniform mesh of 125× 125 is used. The
top wall moves with a horizontal velocity, uo = 0.01m/s,
while the other walls remain stationary. For the rotational mo-
tion of the fluids, the no-spin boundary condition is imposed
at the four walls. Periodic conditions are considered for the
out-of-plane motion.

For verification purposes, we consider lid-driven cavity
flows with a Reµv

= ρuoH/µv equal to 1000. Two micropolar
fluids with kv/µv equal to 0 and 5, respectively are con-
sidered. Following [17], the gyroviscosities, γv , and βv are
set to (µv + kv/2) and zero respectively, i.e., I = 1. The
velocity profiles obtained from the finite volume simulations
are compared with the velocity profiles obtained from the finite
difference simulations of [17] for kv/µv = 5, and the velocity
profiles given in [8] for the Newtonian case, kv/µv = 0
(Fig. 5). The comparison of the velocity profiles shows a
remarkable agreement between the velocities obtained from
the finite volume and finite difference simulations.

VI. PARALLEL PERFORMANCE

To assess the parallel performance of CS_MICRO as a
standalone package, the flow of a micropolar fluid confined in
a three-dimensional cavity of dimensions of (10m, 10m, 5m)
is chosen. In this setup, the top wall moves with a horizontal
velocity, uo = 0.01m/s. The Reynolds number, Re =
ρuoL/(µv + 0.5kv) is set to 1000, where L = 10. The ratio,
kv/µv , and the microinertia, I , are equal to 1 and 10−4m2,
respectively. The no-slip and no-spin boundary conditions are
enforced at the cavity walls.

Structured and unstructured grids of different sizes are used
to mesh the three-dimensional cavity. The structured meshes
consist of 32 and 256 million elements, respectively, both
generated using Code_Saturne’s mesh multiplication capabili-
ties from an initial structured mesh of 0.5 million hexahedral
elements. Additionaly, three unstructured meshes of 11, 88 and
704 million tetrahedral elements respectively, are used to fur-
ther assess the parallel performance of the developed module.
The last two meshes are obtained from the 11 million element
mesh using Code_Saturne’s mesh multiplication capabilities.

The benchmark simulations are carried out on the UK
national supercomputing service ARCHER2 which is a HPE
Cray supercomputing system with dual AMD EPYCTM 7742
type 64-core processors. The parallel performance of the
developed module is analyzed based on the speed-up ratio
which is defined as the ratio of the time required by the min-
imum number of fully populated nodes, nmin (or 128×nmin

processes) to run for 50 steps to the runtime taken by n
nodes, 128 × n processes, for the same number of steps.
The minimum number of nodes for each individual mesh is
identified based on memory considerations. Using a memory
logger tool (memlog), we estimate that the maximum number
of cells that can be handled by each process is around 1 million
cells. For the compressible solver, this number decreases due
to the introduction of additional fields.

The speed-up of CS_MICRO for the meshes employed in
the benchmark simulations is presented in Fig. 6. According to
Fig. 6, CS_MICRO retains the excellent parallel performance
of Code_Saturne up to around 10000 cells per process (MPI
task). After this point, the runtime reaches a plateau, not shown
in the figure. A detailed profiling of the CS_MICRO reveals
that the bottleneck in the parallel performance is related to
the efficiency of the parallellized linear solvers that are used
in the solution of the linearized transport equations within
each iteration. The parallel performance of the linear solvers
is limited due to global MPI communications that take over.
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For instance, when running a simulation with the unstructured
mesh of 88 million cells on 64 nodes, about 75% of the total
runtime is spend in the linear solvers. In contrast, when the
same simulation is run on two nodes, the time spent in the
linear solver decreases to 32% of the total time.

VII. CONCLUSIONS

An open-source finite volume solver of the transport equa-
tions of isotropic micropolar fluids is developed within the
Code_Saturne framework. The developed module is validated
using numerically or analytically obtained benchmark cases
for classical and micropolar fluids. The results are in excellent
agreement with either numerically or analytically obtained
results.

The developed module utilizes all the features of
Code_Saturne that renders Code_Saturne an excellent plat-
form for the modeling of large-scale industrial applications.
Moreover, CS-MICRO inherits all the pre- and post-process
capabilities of Code_Saturne.
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