
eCSE project eCSE08-11

Coupling across the Continuum-Particle

Divide with code saturne and GROMACS

Charles Moulinec1, Yvan Fournier2, Marta Garcia3,

Victor Lopez3, Wendi Liu1 and James Gebbie-Rayet1

1 UKRI-STFC, Sci-Tech Daresbury, Warrington, WA4 4AD, UK

2 EDF R&D, 78400, Chatou, FR
3 Barcelona Supercomputing Center, 08034, Barcelona, SP



Abstract

Simulating interaction between biological structures requires knowledge about whether they would
repel or attract each other when they are close to each other. This work explains how to build a
workflow to inform on this interaction. The macro-structure is modelled using code saturne, the micro-
structure using GROMACS and they are coupled together through the PLE library. The coupling
being staggered, the same computational resources can be used by each software, when the other one is
idle. This optimisation is orchestrated by the DLB library. Tests carried out on ARCHER2 show good
performance up to 64 GROMACS instances running concurrently on 64 nodes of the machine.

Keywords Multi-scale workflow - Coupling - Resource optimisation

1 Introduction

Simulation is becoming ever more important in the life sciences as the complexity of both research problems
and information from lab-based experiments increase. This is reinforced by the award of the Nobel Prize in
Chemistry in 2013 for the development of multi-scale simulation methodologies for complex chemical systems
[1]. In the biomolecular simulation community to date, multi-scale modelling has largely focused on loosely
coupling together two particle-based methodologies. However, these couplings are limited in the range of
scales and applications that they can deal with. There are a number of methodologies that are capable of
running simulations at larger length scales, each of which has slightly different approaches to fluidics and
neighbour interactions. Each of these methodologies requires either detail of the atomic positions which can
then be coarsened into larger particle components (beads) or requires the partition of the system using a
strategy such that the system is composed of particulate repeat units. This parameterisation is often painful
to configure for users and lends itself to parameterisation from the traditional routes of crystal structures
for problems in the life sciences. A novel mesoscale methodology has been developed at Leeds University
[7, 8] which uses a continuum approach to modelling the thermal dynamics of such biological systems using
Fluctuating Finite Element Analysis (FFEA), which relies on meshes to describe the biological system.
This approach allows orders of magnitude time- and length-scale increase over traditional particle-based
methodologies. It is thus possible to be able to very rapidly sample states for mesoscale systems on time
scales that are simply unattainable using particle-based methods without unfeasibly long access to very
large high performance computing. This work is part of a long-term plan that aims to better understand
processes occurring in crowded cellular environments. The number of proteins per cell is of the order of tens
of millions, and no open-source software is currently able to jointly simulate their time-based evolution and
potential interaction (splitting, sticking, and binding) at this scale.
This particular project focuses on the implementation of a multi-scale workflow, and not the physics itself,
to help understand how large systems containing many proteins at the macro-scale either bind together, or
repel each other, when they are situated within a crowded cellular environment as parameterised by micro-
scale simulations. To achieve this, information from the micro-scale (solved by molecular dynamics (MD))
is required by the macro-scale (solved by a mesh-based method). On the computational side, it means
that the protein evolution is simulated at the macro-scale, using a computational structural mechanics
(CSM) approach (code saturne [5, 3]), and potential binding/repulsion is handled at the micro-scale, using a
molecular dynamics approach (GROMACS [2]). A coupling between CSM and MD is required to exchange
information between the scales to decide which action follows (binding/sticking or repulsion). Generalising
this investigation to many proteins (at least several hundreds of thousands within a single cell) can only be
possible using high performance computing (HPC).
This report is organised as follows. Section 2 gives a description of the coupling, Section 3 a short introduction
to the software and libraries used by the workflow, Section 4 shows the steps to prepare GROMACS for
MPMD simulations, Section 5 how both code saturne’s and GROMACS’ installations have to be adapted,
Section 6 presents the coupling between code saturne and GROMACS. Section 7 gives a short description
of the test case, Section 8 explains how the coupling is run, Section 9 presents some results, before Section
10 draws some conclusions, and gives some directions for future work.

2 Description of the coupling

The coupling is multi-scale, the micro-scale simulations carried out using GROMACS informing the macro-
scale simulation performed using code saturne. Both software run in a staggered way, code saturne being
paused, when GROMACS runs before it feeds back on information whether the proteins would repel or
attract each other. Several alternatives are considered to tackle the problem. The first one is to rely on
MPI for this, using MPI_Spawn to run the GROMACS processes. Unfortunately, this instruction is not
supported by MPICH on ARCHER2. The second approach would be based on bash scripting together with

1



MPI_Comm_split in both software. However, both these approaches would not make the coupled workflow
robust enough. It is then decided to couple code saturne and GROMACS through the PLE library [4],
using its integrated coupling strategy. That also means that the integration in code saturne is lightweight,
compared to GROMACS’.
To take full advantage of the fact that the coupled workflow is staggered, it is also decided to get best use
of the computational resources, with GROMACS using code saturne resources while this one is idle. The
DLB library [6] offers this option and is implemented in this work.

3 Short introduction to software and libraries

code saturne and GROMACS are coupled using PLE, and runtime optimisation is achieved by DLB.
code saturne’s license is GNU GPL v2 or above, and GROMACS’s, PLE’s and DLB’s GNU LGPL v2.1
or above.

3.1 code saturne

code saturne is an open-source multi-purpose multi-physics industrial software primarily developed by EDF.
Each release contains a legacy part for computational fluid dynamics that relies on the finite-volume method
to discretise the Navier-Stokes equations [5], and a newly fully integrated discretisation based on the compat-
ible discrete operator (CDO) method mainly to handle other physics [3]; the latter is used in this work. The
software is written in C/C++ (80%), Fortran (5%) and Python (15%), and uses the hybrid MPI+OpenMP
paradigm to handle parallelism on CPU distributed memory machines. The code is based on a “ghost cell”
method for both parallelism and periodicity. MPI-IO is used to handle input/output for large meshes, and
serial IO for much smaller ones. code saturne version 8.3.1 is used in this project.

3.2 GROMACS

GROMACS is an open-source versatile package used to perform molecular dynamics [2]. It is primarily
designed for biochemical molecules like proteins that have a lot of complicated bonded interactions. It is
written in C++ and C, and the hybrid MPI+OpenMP paradigm is used to handle parallelisation on CPU
distributed memory machines. GROMACS is also very efficient on GPUs, but this version of the software is
not used in this project. GROMACS version 2022.4 is used here, but later ones would be easily adaptable.

3.3 PLE

The PLE (Parallel Location and Exchange) library [4], developed by EDF, aims at providing high perfor-
mance utility features, including coupling to code saturne, in a manner also usable by other software. It is
written in C for maximum portability, and is very efficient on CPU distributed memory machines. Version
2.0.4 of PLE is used here.

3.4 DLB

The DLB (Dynamic Load Balancing) library [6], developed by BSC, is a collection of tools targeting HPC
applications. Its main goal is to help with the dynamic load balancing of hybrid codes, which use a nested
parallelism model e.g MPI+OpenMP. DLB provides several components to modify resources at runtime, as
well as a profiler to gather performance metrics. These are: LeWI, DROM, TALP and DLB Barrier. The
DLB Barrier functionality is the only one used in this work, to orchestrate the distribution of the resources
in the workflow. GROMACS containing its own internal DLB library that has a different purpose than this
DLB developed by BSC, it is decided to change the BSC library name from dlb to dlb_dlb and the header
dlb.h to dlb_dlb.h. Version 3.5 of DLB is used here.

4 Preparing GROMACS for MPMD simulations

4.1 Adding a new local world communicator to GROMACS

To be able to run MPMD simulations using code saturne and GROMACS, both software need an internal
world communicator to run the independent parts of their share, when they are both coupled. If this exists in
code saturne, it is not fully implemented in GROMACS. Some operations, mainly to broadcast the command
line options and to detect hardware are carried out using MPI_COMM_WORLD. A new local communicator is
required, through a new function to be implemented, to prevent GROMACS from hanging when coupled
with code saturne. The new files are called:

2



� localworldcommunicator.h

� localworldcommunicator.cpp

The function LocalWorldCommunicator::LocalWorldCommunicator(MPI_Comm world) contains the com-
municator, its size and the rank number the process is run on.
An argument is added to gmx_detect_hardware to point to the local world communicator, and therefore
not use of MPI_COMM_WORLD in two MPI_Allreduce operations, when detecting the hardware.

4.2 Avoiding broadcasting the options

When using MPMD with code saturne, GROMACS hangs at the very start of the simulation, because the
options are broadcast to all the processes of the coupled simulation that relies on MPI_COMM_WORLD. However,
GROMACS is written in a way that each process reads the command line (options), so, no broadcast is
actually required for MPI-only jobs. The call for broadcastArguments is therefore commented out.

4.3 Ignoring thread affinity

GROMACS checks for thread affinity, through the function gmx_check_thread_affinity_set. This is to
be found in threadaffinity.cpp. To achieve this, an MPI_Allreduce operation based on MPI_COMM_WORLD

is implemented. As the thread affinity feature is not used in this work, the two calls to the function
gmx_check_thread_affinity_set have therefore been commented in the file runner.cpp. The following
functions should be worked on in the future, to account for the local world communicator.

1. detectDefaultAffinityMask

2. gmx_check_thread_affinity_set

3. Mdrunner::mdrunner()

5 Adapting code saturne and GROMACS installations

code saturne and GROMACS installations have to be adapted for each software to communicate with each
other through PLE, but also for both of them to support DLB.

5.1 Steps for code saturne to see GROMACS

5.1.1 Addition to the configuration step

code saturne’s installation relies on GNU Autotools. To add GROMACS as an external library, the following
steps are taken:

� A new file is created under the m4 folder, called cs_gromacs.m4

� A new line, m4_include([m4/cs_gromacs.m4]) is added to the original file aclocal.m4

� Two new lines are added to the file called configure.ac, namely CS_AC_TEST_GROMACS and
echo " GROMACS support: "$cs_have_gromacs""

� The following lines are added to the file code_saturne_build.cfg.in.in:

[gromacs]

have: @cs_have_gromacs@

cppflags: @GROMACS_CPPFLAGS@

ldflags: @GROMACS_LDFLAGS@

libs: @GROMACS_LIBS@

To make sure that these changes are accounted for, ./sbin/bootstrap is typed in the code_saturne folder.
$GROMACSPATH being the environment variable pointing to GROMACS’s installation, the options to be passed
to the configure instruction read:

3



./configure \

....... \

--with-gromacs=yes \

--with-gromacs-lib=$GROMACSPATH/lib \

--with-gromacs-include=$GROMACSPATH/include \

.......

In case GROMACS is found, the following line should update on its support, showing this extra line in the
list of all the libraries/tools present in the installation:

.......

GROMACS support: yes

.......

5.1.2 Changes in some code saturne’s Python files

Six Python files are amended, to be able to carry out coupled code saturne and GROMACS simulations.

� cs_case_coupling.py

� cs_case.py

� cs_case_domain.py

� cs_exec_environment.py

� cs_config.py

� cs_create.py

Each coupled simulation (study and case) is prepared as:

code_saturne create --study CS_STUDY --case CS_CASE --gromacs GROMACS_CASE

where:

� CS_STUDY is the main folder for the simulation

� CS_CASE is the folder that manages code saturne’s simulation

� GROMACS_CASE is the folder that manages GROMACS’s simulation(s)

The number of GROMACS’s simulations, and their respective folder is prepared by a bash script (see
Appendix 1).

5.2 Steps for code saturne to see DLB

Following similar steps as for adding GROMACS to code saturne (see Section 5.1.1), DLB is added to the
list of libraries supported by code saturne. A new file cs_dlb.m4 is created, and the following lines are
added to the file code_saturne_build.cfg.in.in:

[dlb]

have: @cs_have_dlb@

cppflags: @DLB_CPPFLAGS@

ldflags: @DLB_LDFLAGS@

libs: @DLB_LIBS@

On ARCHER2, code saturne requires that the following options are added to the configure instruction:

--with-dlb=yes \

--with-dlb-lib=$DLBPATH/lib \

--with-dlb-include=$DLBPATH/include \

CPPFLAGS="-I$DLBPATH/include" \

LIBS="$DLBPATH/lib/libdlb_instr.a -L/usr/lib64 -lpthread -lrt -lhwloc"

It is also required to add the path to DLB library to the ${LD_LIBRARY_PATH}$ environment variable.

4



5.3 Steps for GROMACS to see both external libraries, PLE from code saturne

GROMACS’ installation relies on CMake. A file called FindEXTDLB.cmake is added under the cmake folder
of the distribution and the following lines are added to the main CMakeLists.txt file:

option(GMX_EXTPLE "Add the PLE library" OFF)

mark_as_advanced(EXTDLB)

if (GMX_EXTPLE)

find_package(EXTPLE)

if(EXTPLE_FOUND)

include_directories(SYSTEM ${EXTPLE_INCLUDE_DIR})

list(APPEND GMX_COMMON_LIBRARIES ${EXTPLE_LIBRARY}/libple.a)

set(HAVE_EXT_PLE 1)

else()

message(FATAL_ERROR "External PLE library was not found.

Please add the correct path to CMAKE_PREFIX_PATH")

endif()

endif()

5.4 Steps for GROMACS to see the external DLB

DLB is plugged into GROMACS in the same way as PLE, using a new file called FindEXTDLB.cmake and
the following lines are added to the main CMakeLists.txt file:

option(GMX_EXTDLB "Add the DLB library" OFF)

mark_as_advanced(EXTDLB)

if (GMX_EXTDLB)

find_package(EXTDLB)

if(EXTDLB_FOUND)

include_directories(SYSTEM ${EXTDLB_INCLUDE_DIR})

list(APPEND GMX_COMMON_LIBRARIES ${EXTDLB_LIBRARY}/libdlb_instr.so)

set(HAVE_EXT_DLB 1)

else()

message(FATAL_ERROR "External DLB library was not found.

Please add the correct path to CMAKE_PREFIX_PATH")

endif()

endif()

5.5 Remark on the installation of the workflow

As the installation of the PLE library happens during the installation of code saturne, it is required to install
code saturne twice, the first time for PLE to be available for GROMACS’s installation. The following steps
should be followed:

1. Install DLB

2. Install code saturne that sees DLB (without GROMACS)

3. Install GROMACS that sees DLB and PLE (available from code saturne)

4. Re-install code saturne (that already sees DLB) for it to see GROMACS

Note that it might be possible to install PLE directly, meaning that Step 2, where code saturne is installed
in full, would be different, but this has not been tested in this work.

6 Coupling macro- (code saturne) and micro-scale (GROMACS)

The coupling between code saturne and GROMACS is carried out using the PLE library, as code saturne is
already PLE-compliant. All the developments related to the PLE library are inspired by an existing coupling,
between code saturne and another software called SYRTHES. However, this coupling involves exchanges of
data at mesh boundaries or between mesh volumes, which is not required for the present work. This part is
therefore not implemented in the coupling between code saturne and GROMACS.

5



6.1 Coupling code saturne to GROMACS through PLE

Following the example of the file called cs_syr_coupling.cpp, and its corresponding header, a new file
called cs_gro_coupling.cpp, and its corresponding header are created. They contain the following public
functions, to be called within code saturne to call for the coupling:

� cs_gro_coupling_define which defines new GROMACS couplings

� cs_gro_coupling_all_init which initialises new GROMACS couplings

� cs_gro_coupling_all_finalize which finalises new GROMACS couplings

� cs_gro_coupling_n_couplings which returns the number of GROMACS couplings

� cs_gro_coupling_log_setup which informs on the coupling with GROMACS

The structure used by code saturne for the coupling with GROMACS reads:

typedef struct {

char *gro_name; /* Application name */

char time_step_mode; /* Time stepping mode */

int verbosity; /* Verbosity level */

int visualization; /* Visualization output flag */

/* Communication-related members */

#if defined(HAVE_MPI)

MPI_Comm comm; /* Associated MPI communicator */

int n_gro_ranks; /* Number of associated GROMACS ranks */

int gro_root_rank; /* First associated GROMACS rank */

#endif

} cs_gro_coupling_t;

6.2 Coupling GROMACS to code saturne through PLE

GROMACS requires gmx_mpi, its MPI-ied executable to know that it is coupled with code saturne but
GROMACS also needs some functions to activate its coupling through PLE.

6.2.1 Addition of -app-name as a command line option

This is done in the file legacymdrunoptions.h, where the size of pa is changed from 48 to 49 to add the
-app-name option, as:

{ "-app-name",

FALSE,

etSTR,

{ &mdrunOptions.ExternalCoupling },

"HIDDENExternal coupling, most certainly with code_saturne "}

} // CM: Option for coupling with code_saturne

The structure MdrunOptions is updated in mdrunoptions.h, as:

//! \internal \brief Collection of all options of mdrun that are not processed separately

struct MdrunOptions

{

.................

//! Potential external coupling with code_saturne

const char* ExternalCoupling = nullptr;

};

6.2.2 Instrumentation of GROMACS with PLE

Two new structures are added to mdrun.cpp as:

6



struct cs_gro_coupling_t

{

char *app_name; /* application name, if given */

MPI_Comm comm; /* Associated MPI communicator */

int n_dist_ranks; /* Number of associated distant ranks */

int root_dist_rank; /* First associated distant rank */

cs_gro_coupling_type_t type;

};

struct cs_gro_coupling

{

int app_num; /* App. num for the GROMACS executable */

char *name; /* Name of the current GROMACS executable

in the coupling process */

char *wdir; /* application working directory, if given */

int do_coupling; /* 0 = do not code coupling, else yes */

int n_couplings; /* Number of cfd codes coupled with GROMACS */

char **c_names; /* Related name instances with each cfd code */

cs_gro_coupling_t **couplings; /* Array of pointers to cs_gro_coupling_t

structures */

};

Now that a local world communicator is available (see Subsection 4.1), it is possible to use MPI_Comm_split
to create it for GROMACS in mdrun.cpp and to instrument it using PLE functions.

6.3 Resource optimisation using DLB

The coupling between code saturne and GROMACS is staggered, meaning that when code saturne runs,
GROMACS is idle, and vice versa. It is therefore possible for the 2 software to use the same computational
resources, when the other one is idle. To make sure that GROMACS’ instances are called and released
when needed, DLB is used through its internal barriers. Two barriers are defined in each software, and their
activation is presented in the following.

6.3.1 DLB in code saturne

The additions are carried out in the file called cs_cdo_main.cpp, that manages all CDO simulations, and
specifically in the function cs_cdo_main. DLB is initialised and two barriers are created as:

DLB_Init(0, NULL, NULL);

dlb_barrier_t* barrier1 = DLB_BarrierNamedRegister("Barrier_1",

DLB_BARRIER_LEWI_OFF);

dlb_barrier_t* barrier2 = DLB_BarrierNamedRegister("Barrier_2",

DLB_BARRIER_LEWI_OFF);

/* DLB requires every process to finalize DLB_Init before anyone

calls DLB_Barrier. */

MPI_Barrier(MPI_COMM_WORLD);

The call to the barriers are performed at the end of the time loop, at a specific time-step chosen by the user.
In the example taken below, the 5th one is selected. To be sure that all the processes of the coupling are
synchronised an MPI_Barrier is set for code saturne local world communicator cs_glob_mpi_comm.

if (domain->time_step->nt_cur == 5) {

MPI_Barrier(cs_glob_mpi_comm);

7



DLB_BarrierNamed(barrier1);

DLB_BarrierNamed(barrier2);

}

At the end of the simulation, still in cs_cdo_main, DLB is terminated using the following instruction:

DLB_Finalize();

Note: To get the coupling with GROMACS working in the current version of code saturne, it is required to
add a condition on SYRTHES coupling into the cs_domain.cpp file, to avoid any unexpected synchronisation
at this stage. This reads:

bool

cs_domain_needs_iteration(cs_domain_t *domain)

{

bool one_more_iter = true;

cs_time_step_t *ts = domain->time_step;

if (cs_syr_coupling_n_couplings() > 0) /* CM: New condition */

cs_coupling_sync_apps(0, /* flags */

ts->nt_cur,

&(ts->nt_max),

&(ts->dt_ref));

6.3.2 DLB in GROMACS

DLB is initialised in the function Mdrunner::mdrunner() of runner.cpp as:

DLB_Init(0, NULL, NULL);

dlb_barrier_t* barrier1 = DLB_BarrierNamedRegister("Barrier_1",

DLB_BARRIER_LEWI_OFF);

dlb_barrier_t* barrier2 = DLB_BarrierNamedRegister("Barrier_2",

DLB_BARRIER_LEWI_OFF);

/* DLB requires every process to finalize DLB_Init before anyone

calls DLB_Barrier. */

MPI_Barrier(MPI_COMM_WORLD);

The first barrier is called immediately after these intructions to pause GROMACS as:

DLB_BarrierNamed(barrier1);

The second barrier is called at the end of the function, after making sure that all the GROMACS processes
are synchronised and just before finalising the call to DLB:

MPI_Barrier(cr->mpi_comm_mysim);

DLB_BarrierNamed(barrier2);

DLB_Finalize();

6.3.3 Description of the algorithm involving the DLB barriers

The several steps of the algorithm are enumerated as:

1. code saturne runs while GROMACS is made idle because of its own barrier.

2. When code saturne’s barrier1 is released, GROMACS starts running its share until it hits its own
barrier2.

3. code saturne then recognises its own barrier2 and starts running again, while GROMACS is made
idle again.

8



7 Test case

The main goal of this project being to build a framework for multiscale modelling, without focusing on the
physical modelling involved in the protein interaction, a unique simplified test case is used in this work,
which is scaled depending on the resources used.

7.1 code saturne’s contribution

The configuration is made of arrays of individual ellipsoids, all of the same size S = 52, 264 cells. The arrays
are created by loading independent ellipsoids, that are then all gathered in the same mesh_input.csm file,
code saturne seeing this as a single problem. The vertex-based CDO algorithm is used to solve a Poisson
equation with constant right-hand side.

7.2 GROMACS’ contribution

For sake of simplicity, the lyzozyme in water tutorial (http://www.mdtutorials.com/gmx/lysozyme/index.
html) is retained as the test case for any instance of GROMACS to be run. If there are several of them, they
would run concurrently. It would be very easy to make use of different inputs for each of these instances.
The preparation of the simulation is done prior to the run of the coupling, and input files are copied across
when needed. These preprocessing stages read:

pdb2gmx -f 1AKI_clean.pdb -o 1AKI_processed.gro -water spce

gmx_mpi editconf -f 1AKI_processed.gro -o 1AKI_newbox.gro -c -d 1.0 -bt cubic

gmx_mpi solvate -cp 1AKI_newbox.gro -cs spc216.gro -o 1AKI_solv.gro -p topol.top

gmx_mpi grompp -f ions.mdp -c 1AKI_solv.gro -p topol.top -o ions.tpr

gmx_mpi genion -s ions.tpr -o 1AKI_solv_ions.gro -p topol.top -pname NA -nname CL -neutral

gmx_mpi grompp-f minim.mdp -c 1AKI_solv_ions.gro -p topol.top -o 1AKI.tpr

8 Running the coupling using MPMD

When the coupling is used, code saturne and GROMACS simulations are performed in different folders, and
some care has to be taken to make this possible.

8.1 On a local machine using OpenMPI

In this case, mpirun supports the option -wdir to assign the correct working directory to the correct code.
An example of such an MPMD simulation reads:

mpirun --oversubscribe -np 8 -wdir ./CS_CASE/RESU/CS_CASE \

./cs_solver --app-name gromacs --logp : \

--oversubscribe -np 8 -wdir ./GRO/GRO_0

${GROMACS_PATH}/bin gmx_mpi mdrun -v \

-deffnm 1AKI -app-name code_saturne

8.2 On ARCHER2 using the queuing system

Getting the coupling running fine on ARCHER2, between code saturne and GROMACS through PLE and
using DLB requires some care:

1. srun being used in conjunction with the --multi-prog option assigning the correct process indices,
working directories and options to both software is required.

2. -wdir needs to be directly implemented as an option in GROMACS itself, and added to the pa array
(see Subsubsection 6.2.1 that explains how -app-name is added).

3. It is assumed that the number of instances of GROMACS that are run is the exact same number as the
number of compute nodes used by code saturne. To achieve this, when more than 2 compute nodes
are required, the GROMACS option -multidir is activated, with, as an argument, the number of
oversubscribed GROMACS instances to be run. This option informs GROMACS to trigger its internal
MPI_Comm_split procedure, to have as many GROMACS instances as compute nodes, each of these
instances being ran independently in their own folder.

9

http://www.mdtutorials.com/gmx/lysozyme/index.html
http://www.mdtutorials.com/gmx/lysozyme/index.html


4. The same strategy as on the laptop is carried out, by oversubscribing each node with half of it being
dedicated to part of the code saturne simulation and the other half by an individual GROMACS
instance. In consequence, for each node, the first 128 cores are for a subdomain of code saturne and
the last 128 ones are for GROMACS.

An example of the bottom of the SLURM submission script (to be run on 2 nodes of ARCHER2) reads:

...............

cat <<EOF > multiprog.conf

0-127,256-383 cs_solver -wdir ./CS_CASE/RESU/CS_STUDY --app-name gromacs

128-255,384-511 gmx_mpi mdrun -v -deffnm 1AKI -app-name code_saturne -wdir GCASE -multidir G0 G1

EOF

srun --multi-prog multiprog.conf

The file multiprog.conf, to be used in conjunction of the --multi-prog option for srun contains 2 lines.
The first one has got the list of the core/MPI processes code saturne is run on, as well as the name of the
executable and its options, and the second one, the same syntax, but for GROMACS. Distributing the load
this way e.g. half of each compute node for code saturne and the other half for GROMACS allows the
DLB library to optimise the local-to-each-node resources, that share the same memory, when running these
MPMD simulations.

9 Results

The first subsection shows the potential of code saturne on its own, to load many independent meshes,
knowing that there exist tens of millions of proteins in each biological cell. The second subsection shows the
performance of the coupling between code saturne and GROMACS on ARCHER2.

9.1 Many meshes as input for code saturne

code saturne is used because of its ability to handle extremely large meshes. Single meshes are usually dealt
with by the software. However this work is about assessing how many N independent meshes of size S it can
work with, and for the software to see them as a single mesh of size N ×S made of non-contiguous parts. A
set of N ellipsoids is looked at, each of them made of S = 52, 264 cells.

Number of Number of IO Total number Time to load all the
compute nodes ellipsoids strategy of cells files one by one

4 8 MPI-IO 418,112 0.4 s
4 64 MPI-IO 3,344,896 2.8 s
32 512 MPI-IO 26,759,168 56.9 s
32 4,096 MPI-IO 214,073,344 437.3 s
32 32,768 MPI-IO 1,712,586,752 2833.1 s
256 262,144 Serial 13,700,694,016 3495.1 s

Number of Number of IO Total number Time to load the arrays
compute nodes ellipsoids strategy of cells of files one by one

512 1,048,576 MPI-IO 54,802,776,064 64 files in 24214.75 s
1,024 2,097,152 MPI-IO 109,605,552,128 2 files in 2591.61 s

Table 1: Size of the final meshes and time to load them by parts of ellipsoid meshes.

The first 6 rows of Table 1 show the total number of loaded ellipsoid meshes, as well as the time and IO
strategy to load them. When increasing the number of fully populated compute nodes, serial IO gets much
faster than MPI-IO. For instance, 262, 144 independent ellipsoids are loaded in ARCHER2 memory in less
than 1 hour. The step to load them all can be seen as preprocessing, as, after this step, a file containing all
these individual meshes is dumped onto the disk, and reloaded if needed, using MPI-IO, and also striping,
in the case of the 13, 700, 694, 016 cell mesh, when using Lustre, for instance.
The last two rows of Table 1 show the results for loading over 1 million (resp. 2 millions) of ellipsoids from
pre-computed arrays of ellipsoids.
A test is carried out on the NVME partition of ARCHER2, to write the large mesh of 13,700,694,016 cells
on the disk. It takes about 775 seconds to dump the 1.5 TB file on the disk using the -c -1 striping option.

10



Note that solving a Poisson equation of the 109 billion element mesh using 1,024 nodes of ARCHER2 in
conjonction with the CDO formulation only takes only 300.50 seconds (BiCGstab2 is used as a solver and
Jacobi as a preconditioner).

9.2 Performance of the coupling up to 64 compute nodes

Table 2 shows the performance of the coupling on 4, 8, 16, 32, and 64 nodes of ARCHER2, respectively. The
case on 4 nodes is the baseline for code saturne. Its mesh size, as well as the number of individual ellipsoids
are doubled with the number of compute nodes, mimicking a weak scaling test for code saturne when it runs
on its own. GROMACS is called at code saturne 5th iteration.

Number of compute nodes Number of Compute time of Averaged compute time per Compute time
(code saturne+GROMACS) ellipsoids zeroth time-step time-step without GROMACS with GROMACS

4 (2 + 2) 64 29.93 s 0.15 s 2.57 s
8 (4 + 4) 128 31.02 s 0.16 s 3.78 s
16 (8 + 8) 256 61.02 s 0.16 s 3.20 s
32 (16 + 16) 512 164.56 s 0.19 s 3.41 s
64 (32 + 32) 1,024 647.76 s 0.27 s 4.01 s

Table 2: Compute time in code saturne in case of coupling with GROMACS.

Figure 1 shows the time spent during the zeroth time step of code saturne when the meshes are loaded (left),
the time spent in code saturne alone (centre), when each MPI task is loaded in the same way, and the time
spent in GROMACS instances (right), when each of the nodes carries out the same simulation.

Figure 1: Left: Time spent in the zeroth time step. Centre: Time spent in code saturne alone. Right: Time
spent in GROMACS alone.

10 Conclusions - Future Work

A workflow to inform how biological entities would interact with each other is implemented, using code saturne
for the macro-scale, GROMACS for the micro-scale, with the PLE library to couple them both and the DLB
library to optimise computational resource. It is tested up to 64 nodes of ARCHER2, meaning that, when
required, 64 concurrent GROMACS instances are run, using the computational resrouces of code saturne
that is then made idle.
In the future, the workflow will be profiled, and a larger number of nodes/GROMACS instances will be
tested. Finally, the physics involved in the coupling will be added.

Acknowledgements

This work is funded under the embedded CSE programme of the ARCHER2 UK National Supercomputing
Service (http://www.archer2.ac.uk). The simulations are carried out on ARCHER2 thanks to the Service
Level Agreement between STFC and EPSRC. The authors also would like to thank ARCHER2 support, and
especially David Henty for his excellent suggestions.

11



References

[1] https://www.nobelprize.org/prizes/chemistry/2013/summary/.

[2] M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess, and E. Lindahl. GROMACS:
High performance molecular simulations through multi-level parallelism from laptops to supercomputers.
SoftwareX, 1-2:19–25, 2015.

[3] J. Bonelle, Y. Fournier, and C. Moulinec. New polyhedral discretisation methods applied to the richards
equation: CDO schemes in Code Saturne. Computers & Fluids, 173:93–102, 2018.

[4] Y. Fournier. Massively parallel location and exchange tools for unstructured meshes. International
Journal of Computational Fluid Dynamics, 34(7-8):549–568, 2020.

[5] Y. Fournier, J. Bonelle, C. Moulinec, Z. Shang, A.G. Sunderland, and J.C. Uribe. Optimizing
Code Saturne computations on petascale systems. Computers & Fluids, 45(1):103–108, 2011.

[6] M. Garcia, J. Labarta, and J. Corbalan. Hints to improve automatic load balancing with LeWi for hybrid
applications. Journal of Parallel and Distributed Computing, 74(9):2781–2794, 2014.

[7] Robin C. Oliver, Daniel J. Read, Oliver G. Harlen, and Sarah A. Harris. A stochastic finite element
model for the dynamics of globular macromolecules. Journal of Computational Physics, 239:147–165,
2013.

[8] Albert Solernou, Benjamin S. Hanson, Robin A. Richardson, Robert Welch, Daniel J. Read, Oliver G.
Harlen, and Sarah A. Harris. Fluctuating finite element analysis (ffea): A continuum mechanics software
tool for mesoscale simulation of biomolecules. PLOS Computational Biology, 14:1–29, 03 2018.

Appendix 1

The following script is used to prepare the coupling and to run it on ARCHER2:

#!/bin/bash

#

########################################################

####### DEFINITION OF SOME VARIABLES ###################

########################################################

#

export cs_gro_prefix="/work/c01/c01/vcz18385/\

AMD_ROME/GNU/11.2.0/SOFTWARE/ECSE_GROMACS/120525"

#

export gromacs_exe="${cs_gro_prefix}/GROMACS/gromacs-2022.4/install/bin/gmx_mpi "

export codesaturne="${cs_gro_prefix}/SATURNE/8.3.1_GROMACS_eCSE/\

code_saturne-8.3.1/arch/Linux/bin/code_saturne "

export input_files="${cs_gro_prefix}/INPUTS"

#

########################################################

####### INPUT VALUES ###################################

########################################################

#

if [ $# = 10 ]

then

jobname=$1

total_nodes=$2

total_procs=$3

hours=$4

minutes=$5

cs_study=$6

cs_case=$7

gro_case=$8

nsteps=$9

budget=${10}

else

12



echo "cs_gromacs_submission_script.sh jobname total_nodes \

total_nprocs hours minutes cs_study cs_case gro_case nsteps budget"

exit

fi

#

#####################################################################

####### CREATING THE CASE AND STUDY FOR CODE_SATURNE AND GROMACS ####

#####################################################################

#

echo ""

echo "Creating the study for code_saturne and GROMACS"

echo ""

#

${codesaturne} create --study ${cs_study} --case ${cs_case} --gromacs ${gro_case}

#

gro_multidir=""

#

###################################################

####### COPYING THE REQUIRED FILES ################

###################################################

#

mesh_input="mesh_input_ELLIPSOID_0_0_0_248_155_155.csm"

#

cp ${input_files}/CODE_SATURNE/${mesh_input} ${cs_study}/MESH/.

cp ${input_files}/CODE_SATURNE/cs_user*.cpp ${cs_study}/${cs_case}/SRC/.

cp ${input_files}/CODE_SATURNE/cs_user_scripts.py ${cs_study}/${cs_case}/DATA/.

#

##################################################################

####### CREATE AND PREPARE THE FOLDER TO RUN THE SIMULATION ######

##################################################################

#

folder_id=${cs_study}

cd ${cs_study}/${cs_case}/RESU

${codesaturne} run --initialize --id ${folder_id}

cd -

#

#########################################################################

####### STRING OF CHARACTERS CONTAINING GRO_i * (total_nodes) ###########

#########################################################################

#

list_gro_folders=""

gro_0="GRO_0"

gro_wdir=‘pwd‘/${cs_study}/${gro_case}

#

for (( i=0; i<${total_nodes}; i++ ))

do

mkdir ${cs_study}/${gro_case}/GRO_$i

list_gro_folders=${list_gro_folders}" GRO_$i"

if [ ${total_nodes} -gt 1 ]; then

gro_multidir="-multidir "

gro_0=""

fi

cp ${input_files}/GROMACS/1AKI/* ${cs_study}/${gro_case}/GRO_$i/.

done

#

if [ ${total_nodes} -gt 1 ]; then

gro_multidir=${gro_multidir}${list_gro_folders}

else

gro_multidir=""

gro_wdir=${gro_wdir}/${gro_0}

fi

13



#

##########################################################

####### SUBMISSION SCRIPT (SLURM + SRUN) - MPMD ##########

##########################################################

#

array_size=$((2*${total_nodes}+1))

#

list_nodes_even=""

list_nodes_odd=""

#

declare -a sequence_proc[array_size]

#

for ((i = 0; i <= 2*${total_nodes}; i++)); do

sequence_proc[i]=$((128*$i));

done

#

add_comma=""

#

for ((i = 1; i <= ${total_nodes}; i++)); do

if [ $i -gt 1 ]; then

add_comma=","

fi

list_nodes_even=${list_nodes_even}${add_comma}${sequence_proc[2*(i-1)]}-\

$((${sequence_proc[2*i-1]}-1));

list_nodes_odd=${list_nodes_odd}${add_comma}${sequence_proc[2*i-1]}-\

$((${sequence_proc[2*i]}-1));

done

#

cd ${cs_study}

#

cat > $jobname << TAG

#!/bin/bash

# Slurm job options (job-name, compute nodes, job time)

#SBATCH --job-name=$jobname

#SBATCH --output=$jobname.%j

#SBATCH --error=$jobname.%j

#SBATCH --time=$hours:$minutes:00

#SBATCH --nodes=${total_nodes}

#SBATCH --account=$budget

#SBATCH --partition=standard

#SBATCH --qos=standard

module load PrgEnv-gnu

export OMP_NUM_THREADS=1

export DLB_ARGS="--silent"

SARGS="--cpus-per-task=1 --cpu_bind=rank"

cat <<EOF > multiprog.conf

${list_nodes_even} ‘pwd‘/${cs_case}/RESU/${cs_study}/cs_solver \

-wdir ‘pwd‘/${cs_case}/RESU/${cs_study} --app-name gromacs

${list_nodes_odd} ${gromacs_exe} mdrun -v -deffnm 1AKI -app-name code_saturne \

-nsteps 10 -wdir ${gro_wdir} ${gro_multidir}

EOF

srun ${SARGS} --multi-prog multiprog.conf

TAG

14



chmod 755 $jobname

sbatch $jobname

It is run as:

cs_gromacs_submission_script.sh \

jobname \

total_nodes \

total_nprocs \

hours \

minutes \

cs_study \

cs_case \

gro_case \

nsteps \

budget

15


	Introduction
	Description of the coupling
	Short introduction to software and libraries
	code_saturne
	GROMACS
	PLE
	DLB

	Preparing GROMACS for MPMD simulations
	Adding a new local world communicator to GROMACS
	Avoiding broadcasting the options
	Ignoring thread affinity

	Adapting code_saturne and GROMACS installations
	Steps for code_saturne to see GROMACS
	Addition to the configuration step
	Changes in some code_saturne's Python files

	Steps for code_saturne to see DLB
	Steps for GROMACS to see both external libraries, PLE from code_saturne
	Steps for GROMACS to see the external DLB
	Remark on the installation of the workflow

	Coupling macro- (code_saturne) and micro-scale (GROMACS)
	Coupling code_saturne to GROMACS through PLE
	Coupling GROMACS to code_saturne through PLE
	Addition of -app-name as a command line option
	Instrumentation of GROMACS with PLE

	Resource optimisation using DLB
	DLB in code_saturne
	DLB in GROMACS
	Description of the algorithm involving the DLB barriers


	Test case
	code_saturne's contribution
	GROMACS' contribution

	Running the coupling using MPMD
	On a local machine using OpenMPI
	On ARCHER2 using the queuing system

	Results
	Many meshes as input for code_saturne
	Performance of the coupling up to 64 compute nodes

	Conclusions - Future Work

