
Technical Report for ARCHER2-eCSE08-10:
Improving multi-threaded scaling of
CONQUEST
Tuomas Koskela1, Ilektra Christidi1, Connor Aird1, and David Bowler2

1Advanced Research Computing Centre, UCL
2London Centre for Nanotechnology, UCL

ABSTRACT

This report describes the work done to improve the multi-threaded performance of the CONQUEST
large-scale DFT code under the eCSE08-10 project. The aim of the project was to improve the scalability
and sustainability of CONQUEST. Scalability on modern CPU architectures with MPI only parallelism
was found to scale poorly. To improve the scaling, previous work on OpenMP threading of matrix multiply
kernels was refactored and expanded to cover more compute-intensive kernels in the code. We also
sought to further improve the MPI scaling by implementing and testing the efficacy of the overlap of
communication and calculation in matrix multiplication. The sustainability of the code was improved by
introducing automated testing and build system automation. Automated tests now run in a continuous
integration workflow on all pull requests to the main development branch on GitHub. The Makefile build
system has been documented and version controlled on various HPC systems and automation with the
Spack HPC package manager has been introduced.

Keywords: eCSE, ARCHER2, CONQUEST

1 INTRODUCTION
CONQUEST is a large-scale and linear-scaling density functional theory (DFT) code, which can model
systems of up to 10,000 atoms with diagonalisation, and which has demonstrated calculations on more
than 2,000,000 atoms with linear scaling, where the upper limit is set by the number of processes available.
In linear scaling mode, it shows exceptional weak scaling, demonstrated on just over 196,000 processes
on the K computer.

The main computational load in linear scaling mode is matrix multiplication (MM), while for diago-
nalisation mode it is the eigensolver from SCALAPACK (pzhegvx); much of the remaining computational
time is spent on grid-based operations. The parallelisation was designed at a time when there were
relatively few cores per node (typically 4-8), and the strong and weak scaling of CONQUEST can be
adversely affected by large numbers of MPI processes per node: the main issue is contention between MPI
processes for communications bandwidth. A previous project showed that combining MPI and OpenMP
threading could restore the weak scaling for MM for fixed process count (reducing the number of MPI
processes per node, and introducing threads for MM). However, other parts of the code which were not
multi-threaded necessarily performed more slowly on low numbers of MPI processes per node.

This report documents the findings and improvements made to CONQUEST in the eCSE08 project
”Improving multi-threaded scaling of CONQUEST”. The overall objective of the project was to improve
the scalability and sustainability of CONQUEST, particularly improving its threaded performance on
architectures with large core counts. The work was done in collaboration between the PI, professor David
Bowler, and a team of research software engineers, Tuomas Koskela, Ilektra Christidi and Connor Aird
from the UCL Centre for Advanced Research Computing.

2 SUSTAINABILITY IMPROVEMENTS
The sustainability of the code was improved by introducing a suite of tests and benchmarks, a continuous
integration workflow and build system automation.

2.1 Suite of tests for Continuous Integration
Input and reference output files for three end-to-end tests were added to the main development branch of
CONQUEST. The first two tests are simple eight atom bulk Si systems (one atom moved off site to ensure
non-zero forces) for both diagonalisation and linear scaling (#184). The third test tests polarisation for a
BaTiO3 system (#199). Unit tests were considered but deemed to be out of scope for the project due to
the substantive refactoring that would have been needed (#187).

A continuous integration workflow was then added on GitHub actions (#189). It checks out the
code, builds it, runs the tests and verifies the results using a python script that is executed with pytest
(#192). The tests are executed in both serial and parallel on two processes with both MPI and OpenMP.
The test suite can be extended when new code features are implemented. The process of adding new
tests is documented in the README file of the testsuite. (#201). The GitHub actions workflow is set
to run on all pull requests and pushes to the develop branch to detect bugs before new code is merged.
By default the tests are built using the default matrix multiply kernel. A feature was later added to
enable testing of all multiply kernels (#292). This requires launching the workflow manually with the
multiply_kernel_test variable set to true in the GitHub UI. See Section 3.3 for more details on
multiply kernels.

2.2 Store inputs for performance benchmarks
A set of performance benchmarks was added under the benchmarks directory in the repository, so that they
are easier to reference and share, and reuse in later projects (#261). For details of the benchmarks, see the
README.md files in the benchmarks/ directory. The benchmarks include a weak scaling benchmark
matrix_multiply, that contains a set of input files scaling up from 64 to 262144 atoms that can be
used to run a weak scaling study. The CONQUEST performance benchmarks have been automated using
ReFrame in the excalibur-tests project. See documentation of the project for more details.

2.3 Build system improvements
Version control of host specific build files To build CONQUEST, the user provides a system.make
file that contains system-specific information, such as compilers, flags, paths to libraries etc. Originally
this was done manually by each user based on documentation in the repository. As part of this project, we
have written system.make files for commonly used HPC systems, including ARCHER2, and added
them into the repository (#272). The build system has been refactored such that the system being built
on is selected by setting a variable. Automatic detection of the host system was investigated, but found
unpractical by the users of CONQUEST.

Spack package A Spack package has been developed and merged upstream to spack (#40718) such that
CONQUEST and all of its dependencies can be installed with Spack. The CONQUEST package requires
Spack v0.21 or later. If Spack isn’t available or up to date on the system, it is relatively straightforward to
install it with user permissions following the install instructions. The installation documentation has been
updated to include installing with Spack. More details can be found in the Spack CONQUEST package.

3 PERFORMANCE IMPROVEMENTS
3.1 Performance bottlenecks in CONQUEST
Performance profiling with Intel VTune, Intel Advisor, Linaro MAP and Scalasca were heavily utilised
in the development and optimisation workflow. We verified that matrix multiplications, SCALAPACK
diagonalisation and grid-based operations were significant performance bottlenecks in performance
benchmarks that were introduced (#262). We did not find significant time being spent in Fourier
transforms in these benchmarks, contrary to what was previously assumed.

3.2 Multi-threading grid-based operations
Thread loops over blocks The K222_G200 benchmark was used as a reference when analysing
performance of loops over grid blocks. In the benchmark, four subroutines, summarized in table 1, were
identified as spending significant time in loops over grid blocks and selected for multi-threading.

In calc_matrix_elements_module, threading has been implemented in the subroutines
get_matrix_elements_new and act_on_vectors_new (#195). Both subroutines have a deep
loop nest where the loop over grid blocks is the outermost loop. In get_matrix_elements_new the

2/8

https://github.com/OrderN/CONQUEST-release/pull/184
https://github.com/OrderN/CONQUEST-release/pull/199
https://github.com/OrderN/CONQUEST-release/issues/187
https://github.com/OrderN/CONQUEST-release/pull/189
https://github.com/OrderN/CONQUEST-release/pull/192
https://github.com/OrderN/CONQUEST-release/pull/201
https://github.com/OrderN/CONQUEST-release/pull/292
https://github.com/OrderN/CONQUEST-release/pull/261
https://ukri-excalibur.github.io/excalibur-tests/
https://github.com/OrderN/CONQUEST-release/pull/272
https://github.com/spack/spack/pull/40718
https://conquest.readthedocs.io/en/latest/installing.html#installing-with-spack
https://packages.spack.io/package.html?name=conquest
https://github.com/OrderN/CONQUEST-release/pull/262
https://github.com/OrderN/CONQUEST-release/pull/195

subroutine fraction of total run time
act_on_vectors_new 28.3 %

get_matrix_elements_new 8.0 %
single_pao_to_grad 35.7 %
single_pao_to_grid 4.1 %

Table 1. Subroutines selected for multi-threading

innermost loop accumulates data in send_array, therefore a reduction is done at the end of the parallel
region. Array reductions are natively supported in Fortran, but it was found that on some systems the
OMP_STACKSIZE environment variable has to be set to have enough memory available for the array
reduction #267. In get_matrix_elements_new, gridfunctions%griddata is updated with
a gemm call in the innermost loop. The updates are done in separate indices by each loop iteration, it can
be safely updated by all threads in parallel.

In PAO_grid_transform_module, the single_PAO_to_grid subroutine has been rewrit-
ten so that threading over blocks can be done. The innermost loop updates gridfunctions%griddata
with each loop iteration updating at a different index. However the index was calculated sequentially
inside the loop, which made it unsafe for threading. The rewritten subroutine first precomputes the
indices and stores them in an array, then does the loop over blocks which can now safely be threaded
(#245). The single_PAO_to_grad subroutine was removed in and the functionality merged with
single_PAO_to_grid (#251).

Reduce code duplication in PAO grid transform module The subroutines single_PAO_to_grid
and single_PAO_to_grad were found to duplicate almost all of their code with only a difference
of a subroutine call in the innermost loop (#244). They have been combined to a single subroutine
PAO_or_gradPAO_to_grid. (#251). An interface for the called subroutine has been defined, and
the subroutine to call is passed as an argument to PAO_or_gradPAO_to_grid. Any subroutine
can be passed, as long as it conforms to the interface. In addition to reducing code duplication, this
got rid of OpenMP overheads in single_PAO_to_grad by using the refactored code written for
single_PAO_to_grid.

Table 2 shows a performance comparison to the development branch. These were run on the MMM
hub Young cluster using 8 MPI ranks. Both serial and multi-threaded performance is improved, with a
2.6x parallel speedup on 4 threads.

develop optimised
Without -fopenmp 95.331s 63.482s

With -fopenmp, 1 OMP thread 95.597s 62.324s
With -fopenmp, 4 OMP threads 36.491s

Table 2. Performance comparison before and after optimisation of grid-based loops

3.3 Optimising the performance of matrix multiply
The matrix_multiply benchmark was used as a reference when analysing performance of the matrix
multiplication kernels. In this benchmark, main bottlenecks are the multiply_kernel_* kernels, and
MPI communications. We investigated the performance of the previously implemented multi-threaded
matrix multiply kernels, and aimed to further improve the multi-threaded performance.

Reducing OpenMP overhead The creation of the !$omp parallel region was moved out of the
multiply kernels, to the main loop in multiply_module and orphaned !$omp do directives were
used on loops inside the multiply kernels (#266). This was done to reduce the overhead of spawning
threads each time the multiply kernel is called. Since the main loop handles both MPI communications
and the multiply kernels, the MPI communications were wrapped in omp master directives, to restrict
them to the main thread. To do that, we had to introduce OpenMP barriers around the MPI communication
to ensure data has arrived before distributing work to OpenMP threads. This was previously guaranteed
because the communication was done outside the parallel region.

3/8

https://github.com/OrderN/CONQUEST-release/pull/267
https://github.com/OrderN/CONQUEST-release/pull/245
https://github.com/OrderN/CONQUEST-release/pull/251
https://github.com/OrderN/CONQUEST-release/issues/244
https://github.com/OrderN/CONQUEST-release/pull/251
https://github.com/OrderN/CONQUEST-release/pull/266

Overlapping communication and computation The multiply_module is already threaded with
OpenMP as described in the previous section. However, in every iteration over partitions, the data has
to first be brought from remote processes via MPI blocking point-to-point communications before the
multi-threaded computation can begin, in order to use the correct data.

We investigated overlapping the communication and computation in this module (#265 and #290), by
allowing data from one partition to be processed while data from another partition is being received by
non-blocking MPI calls. For this scheme to work, we had to double the memory buffers where data are
received. Available memory limitations do not allow for a more general scheme, where all data would
be received simultaneously and asynchronously, and computations on any partition would commence as
soon as the data are safely received.

The matrix_multiply benchmark did not show a performance improvement with the new scheme,
although weak scaling on ARCHER2 seemed to stabilise for higher number of threads and processes
(see figure 1). Removing MPI barriers from the code where they were not needed for correctness, only
marginally improved performance. Delving deeper into code traces and the order in which data are
received and processed, revealed that the bottleneck is not actually the time that the communication takes,
but the order in which the different data are received: all the non-blocking MPI sends are issued by all
processes before the loop, therefore data from any partition can be ready to be received in any order,
and not necessarily the one that the loop over partitions imposes (see figure 3) Receiving them in order
introduces un-necessary load imbalance in the communication time between processes.

Figure 1. Weak scaling of the matrix multiplication communication-computation overlap.

In future work to optimise the communication-computation interplay in the multiply_module,
we recommend that computations are performed in the order data is received, rather than the sequential
order that is imposed by the main loop. Such a scheme can be implemented using MPI_Iprobe followed
by blocking MPI receives (see preliminary attempts in branch ic-mm-comms-optimise-order).

Optimizing the ompGemm m multiply kernel The performance of all available multiply kernels was
investigated in the matrix_multiply benchmark using 8 MPI ranks and 4 OpenMP threads per rank.
The results are summarized in table 3. The ompGemm_m kernel was found to perform the best and was
therefore chosen as the target of further optimisation, with the intention that it should be used in most (if
not all) cases and the worse performing multiply kernels could be eventually removed.

kernel default gemm ompDoii ompDoik ompDoji ompGemm ompGemm_m
runtime 140.5s 107.9s 83.0s 69.6s 85.2s 72.2s 69.1s

Table 3. Total runtime of the matrix multiply benchmark with different multiply kernels. Note that the
ompTsk kernel was also available but did not execute successfully.

The ompGemm_m had a memory leak that had to be fixed before doing any optimisation work. The
arguments of m_kern_max and m_kern_min contained remote index arrays of fixed size mx_part,

4/8

https://github.com/OrderN/CONQUEST-release/issues/265
https://github.com/OrderN/CONQUEST-release/pull/290
https://github.com/OrderN/CONQUEST-release/tree/ic-mm-comms-optimise-order

Figure 2. Code traces of two loops in the multiply module, for 8 MPI processes.
Top: before any changes to implement communication-computation overlap. All the MPI sends are
issued at the time of the black circles with rhombuses just after the 35.52s mark. Then each process
executes the loop, receiving messages with MPI Recv from other partitions in order. For most processes
this happens quickly and we cannot even see the MPI Recv in the trace, but process 1 has to wait for
considerable time at some point, because the message for that particular partition has not arrived yet. As a
result, the rest of the processes have to wait for process 1 to finish at the MPI Barrier at the end of the
loop. This pattern repeats in the next iteration (starting at around 35.60s), with process 5 now causing
everyone else to wait.
Bottom: after the communication-computation overlap implementation and removal of MPI barriers.
Even though it is harder to identify without any MPI barriers at the end of the loop, we can see that the
same communication pattern exists: in the loop starting after the MPI sends are issued at the time of the
black circles just after 34.94s, processes 5 and 6 are waiting at an MPI Wait for messages to arrive. As a
result, the rest of the processes have to wait for them to finish at their MPI Wait before proceeding to the
next iteration at the time indicated by the next set of black circles (now not in sync).

but the arrays passed in to the kernel were not always of this size. Because these were passed in as
pointers, the size of the array was never explicitly allocated. The arrays were then passed into the maxval
function to find a size of a another allocatable array. maxval looks at all elements from 1 to mx_part
and for some of the pointers it found uninitialized memory, which would lead to allocation errors. The
issue was fixed by using assumed shape arrays for the remote index arrays (#293).

The multiply kernel consists of two subroutines m_kern_max and m_kern_min. On a high level,
the kernel does a sparse matrix-matrix multiplication and accumulates the results in a sparse matrix. We
found most of the time spent in the kernel was spent copying data from a sparse matrix storage format to
a dense matrix, and vice versa. In the ompGemm_m implementation, the multiplication operation itself
is done by a BLAS dgemm call. We used the Intel Math Kernel Library as the BLAS backend with the
assumption that on an Intel system it is sufficiently optimised. The optimisations to the kernel then focus
on reducing memory copies as much as possible (#327).

5/8

https://github.com/OrderN/CONQUEST-release/pull/293
https://github.com/OrderN/CONQUEST-release/pull/327

In m_kern_max we avoid making temporary copies of the input matrices A and B completely by
calling dgemm on the whole matrices, including the zero elements. This is the main performance gain.
The zero elements are skipped when copying the temporary result back to C, keeping the end result sparse.
A and B are stored as 1D arrays which can be passed into dgemm as arguments. The only remaining work
before the dgemm call is computing the start and end indices into A and B. The result is stored into a
temporary array and copied into the sparse representation of C after the dgemm call. In m_kern_min
we still make temporary copies of B and C because both of them are stored in a sparse data structure.
The copies could be vectorized to improve performance but we found the benefits are not great due to
the typically small values of the dimensions nd1 and nd3. No temporary copy is needed for the result
A. Some code duplication was found in m_kern_min and m_kern_max in the index calculations
and they have been refactored into a separate subroutine precompute_indices. The impact of the
optimisations is summarised in Table 4. Note that these are purely optimisations on the serial performance
of the kernel. Profiling suggested that the multi-threaded performance is improved more than the 20 %
that we see in serial performance, this could be due to an improvement in the load balance.

total dgemm m_kern_max m_kern_min
before 505s 70s 105s 75s
after 401s 69s 42s 69s

Table 4. Time spent in serial execution of the matrix multiply benchmark with 256 atoms before and
after optimisations. The most significant optimisation is the reduction of memory copies in m kern max
which reduces its time by 2.5x.

The main source of parallel inefficiency remaining in the matrix multiply benchmark is Serial code
outside parallel regions, rather than thread imbalance in the parallel region. The serial code is fairly evenly
split between a large number of subroutines with no obvious bottlenecks standing out. It would require
more RSE effort to thread the remaining serial parts of the code.

3.4 Multi-threading exact exchange calculation
Multi-threading was added to the exact exchange kernel in CONQUEST. This work was not included in
the proposal, but was decided to be added during the project. The optimisations, described in more detail
below, yielded good multi threaded performance on up to 8 threads, shown in Figure 3.

m kern exx cri kernel: To improve this kernel’s performance the serial performance was first improved
by combining three individual instances of the same nested loop structure into one. An array deduction
inside a triple nested loop was then replaced with a call to the blas function dot. This required refactoring
some allocatable arrays into 1d buffers and using pointer arrays to reference them. Some additional
unused allocatable arrays were also removed. Finally, OMP threading was added around two nested loops
containing the bulk of the calculations. Collapsing these two loops with OMP lead to good scaling of the
threaded region from 1 to 16 OMP threads.

m kern exx eri kernel: This kernel matches m_kern_exx_cri closely. Therefore, the inner calcula-
tion, including the newly introduced blas call, was extracted into a separate subroutine and called from
both kernels which helped reduce code duplication. OMP threading was then added in a similar place to
the m_kern_exx_cri kernel with the exception of only one loop rather than two nested ones. This
immediately showed good scaling from 1 to 8 OMP threads.

m kern exx eri gto kernel: Again, this kernel has many similarities with the previous. Therefore,
the inner calculation (the part which differed from m_kern_exx_eri) was extracted into a separate
subroutine and called from within the newly refactored m_kern_exx_eri kernel with an additional
parameter is_gto. This allowed an immediate benefit from the OMP threading added in the previous
step.

Threading exx phi on grid The subroutine exx phi on grid is called several times from all of the above
kernels and showed up as a hotspot in our VTune profiles. Therefore, OMP threading was added to the
nested loops over x, y and z within. This showed a good improvement to overall performance and scaling.
Before this threading was implemented, some serial improvements were made such as removing unused
calculations and unnecessary zeroing of variables.

6/8

Figure 3. Results of running benchmarks of the three optimised EXX kernels using Reframe. The
benchmark test EXX isol C2H4 4proc PBE0CRI fullDZP 0.2 demonstrates the performance of the
m kern exx cri kernel, whereas test EXX isol C2H4 4proc PBE0ERI fullSZP 0.4 SCF and
test EXX isol C2H4 4proc PBE0CRI fullSZP GTO SCF demonstrate that of m kern exx eri with is gto
== .false. and m kern exx eri with is gto == .true. respectively. Results can be seen for two code
versions, before our changes (old - 41cf7e2b) and after (new - 4f66f822).

4 SUMMARY

In this project, we have improved the sustainability and multi-threaded performance of CONQUEST. The
sustainability has been improved by adding automated tests, continuous integration, and automation of the
build system. The performance improvements can be summarised in three parts. In grid-based operations,
code has been refactored to reduce duplication, and OpenMP parallelisation has been added on loops
over blocks. In Matrix multiplication, the serial multiply kernel has been optimised, the OpenMP parallel
region has been moved to a higher level, and overlapping communication and computation has been
investigated. In the exact exchange calculation, code has been refactored to merge loops over support
functions, and the resulting fused loop has been parallelised with OpenMP.

7/8

5 ACKNOWLEDGMENTS
This work was funded under the embedded CSE programme of the ARCHER2 UK National Supercom-
puting Service (http://www.archer2.ac.uk). We are grateful to the UK Materials and Molecular Modelling
Hub for computational resources, which is partially funded by EPSRC (EP/T022213/1, EP/W032260/1
and EP/P020194/1).

REFERENCES

8/8

	Introduction
	Sustainability improvements
	Suite of tests for Continuous Integration
	Store inputs for performance benchmarks
	Build system improvements

	Performance improvements
	Performance bottlenecks in CONQUEST
	Multi-threading grid-based operations
	Optimising the performance of matrix multiply
	Multi-threading exact exchange calculation

	Summary
	Acknowledgments
	References

