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Abstract 
 

The FHI-aims software package can model molecular and periodic systems on the same 
numerical infrastructure and is known to be particularly good for modeling of surface 
structure and related adsorption/reaction processes. Due to FHI-aims’ representation of 
electronic structures with state-of-art basis sets, a good balance of accuracy, performance, 
and memory requirements is achieved for simulation of surface models. Through this eCSE 
project, the capabilities of FHI-aims to simulate on-surface adsorption have been improved. 
Specifically: the robustness of the Basis Set Superposition Error (BSSE) correction has been 
increased for periodic systems, including surface slabs; the implementation of the MPE 
(Multipolar Potential Expansion) implicit solvation model has been extended to support 
periodic systems, such as surface slabs; and the sparsity pattern of a large matrix used by the 
MPE subroutines has been dramatically improved.  
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Motivation 
 

The FHI-aims code [1] is widely used for simulation of various on-surface processes 
including heterogeneous catalysis and adsorption. However, until this eCSE project there 
were notable functionality gaps that complicated typical computational studies of this kind, 
or hampered their accuracy. The key advantage of FHI-aims for surface simulations is the real-
space localized basis set, which allows efficient representation of any thickness of a vacuum 
layer above the simulated surface without additional computational expense. Indeed, many 
density functional theory (DFT) codes tailored to simulate periodic systems use a plane-wave 
basis set, which introduces substantial memory requirements for surface models. The 
drawback of the real-space localized basis set is the difficulty involved in implementing 
periodic boundary conditions, and functionality gaps which existed only for periodic systems, 
including: 

1. The so-called “ghost” atoms were only robustly supported for non-periodic systems. 
2. There was no implicit solvent model for periodic systems. 

Both omissions from the original code have been addressed in this project. 
 
  



 

“Ghost” atoms 
 

Basis functions localized in real space are commonly parametrized by coordinates of a 
point, called an expansion center. In DFT codes, atomic nuclei are typically used as expansion 
centers, but additional basis functions with expansion centers different from atomic 
coordinates are sometimes favorable. Such basis expansion centers are called “ghost” atoms; 
they are used for electron structure description, but unlike “real” atoms they do not add 
charge or mass to the system. Therefore, they require special treatment in DFT codes. For 
electronic structure implementations with an atom-centred basis, the “ghost” atoms are 
required calculation of a Basis Set Superposition Error (BSSE) correction [2]; in FHI-aims, they 
also provide specific functionality necessary for some QM/MM schemes implemented in the 
ChemShell framework [3]. 
 
Implicit solvent model 
 

Many physical and chemical processes important for industry and medicine occur in a 
solvent environment. Explicit simulation of the solvent phase is extremely expensive because 
it is both highly mobile and is composed of many constituent solvent molecules. An 
exhaustive number of configurational samples is necessary for explicit calculation of solvent’s 
entropic contribution into the free energy; however, thanks to the mobility and disorder of 
solvent molecules, their contribution can be time-averaged and approximated with implicit 
models. Implicit solvent models represent the solvent as a continuous media with specific 
dielectric permittivity that responds to the electrostatic potential created by the solute.  

FHI-aims implements two implicit solvent models: Modified Poisson-Boltzmann (SMPB) 
and Multipole Expansion (MPE). Both of these models use the concept of solute cavity, i.e., a 
space region unavailable for solvent molecules due to spatial repulsions of the solvated 
species or solids. The solute cavity region has dielectric permittivity that differs from the 
solvent region. The key difference between SMPB and MPE models is the method to represent 
the cavity and its boundary; the MPE model implies sharp change of the dielectric permittivity 
on the boundary, whilst SMPB uses smooth transition.  

Implementations of both models in FHI-aims are actively developed, and before this 
project neither provided support for periodic boundary conditions.  
 
MPE solvent model 
 

The detailed description of the MPE model can be found in Ref. [4]. An important recent 
modification that improved scalability and accuracy of the model has been introduced in Ref. 
[5]. Here, we provide a birds-eye view of the model with focus on key features of its 
implementation in FHI-aims. 

The MPE model modifies the electronic potential in the Kohn-Sham equation by adding 
the electrostatic potential that “results from polarization of the surrounding dielectric 
medium” [4]. This additional potential (further referred to as MPE potential) is described as a 
linear combination of regular and irregular solid harmonics centered on nuclei of heavy atoms 
(non-hydrogen). The regular harmonics are used to represent the MPE potential within the 
solute cavity, and irregular harmonics are used for the solvent region. The total potential 
should be continuous on the cavity boundary. This continuity requirement can be written as 



 

a system of linear equations (SLE) with the coefficients of the solid harmonics as the unknown 
variables (see Eq. 15 in Ref. 4). The problem can be represented in the matrix form thus: 
 

𝐴𝑐 = 𝑏       (1) 
 
Each linear equation in (1), i.e., each row of matrix A, corresponds to a point on the cavity 
interface, where the boundary conditions are defined (In practice, there are two rows for each 
point, to account for both the potential and potential gradient continuity constraints). c is the 
vector of coefficients of solid harmonics, and b is the vector of constants that depend on the 
potential induced by the solute at the corresponding point. FHI-aims provides multiple 
methods to define the mesh of interfacial points; some define a static mesh before DFT 
calculations, whilst other options update the mesh dynamically between the SCF (self-
consistent field) loop iterations, adjusting it to the equilibrating electronic density. In contrast, 
the vector b changes on every SCF step due to the change in the potential. Overall, the key 
computational task of the MPE model is the solution of Eq (1). 

In the original MPE formulation, the matrix A in Eq (1) was dense. To increase the 
scalability and numerical stability of the MPE model, it was recently proposed [5] to split the 
solute cavity onto subcavities around each heavy atom. In that way, the MPE potential in a 
subcavity was represented using solid harmonics centered at only the atom in that subcavity. 
As a consequence, the boundary conditions on each subcavity interface directly affects only 
a specific subset of the multipolar expansion. The modification adds boundaries between 
subcavities, and therefore new boundary conditions and rows to the matrix A in Eq (1), but 
simultaneously A becomes sparser (See mpe-nc pattern, Figure 1). The matrix sparsity 
provides opportunity for performance gains, but A still has an undesirable dense block that 
corresponds to the MPE potential in the solvent region.  

To make the whole of matrix A sparse, and therefore to open the way to usage of high-
performant sparse linear solvers, the locality of solid harmonics was exploited by further 
splitting of the solvent region to increase the matrix sparsity, similar to the implementation 
for the cavity region. Moreover, the piecewise representation of the solvent region would 
provide a natural way to introduce periodic boundary conditions, which is a highly desirable 
feature for molecular modelling. 



 

 
Figure 1. Sparsity patterns of the MPE matrix [see Eq. (1)] for different implementations. 

Blue and yellow colours represent zero and non-zero elements correspondingly. The 
implementations considered are: mpe2017 - the original MPE version [4];  mpe-nc – MPE with 

solute subcavities [5]; mpe-ncps – new MPE implementation with piecewise solvent. 
 
Results  
 
Piecewise solvent for MPE model 
 

In this project we have implemented the piecewise representation of the solvent region 
for the MPE model in the FHI-aims code. To achieve this outcome, the MPE matrix 
construction subroutines were significantly refactored, with new solute-solute interfaces 
introduced between solute subregions. Furthermore, the solute-solvent boundary conditions 
have been adopted to use a single-atom basis set for a solvent side. 

To realise the complementary objective of adding support of periodic boundaries for 
the MPE model, we decided to employ a designated library for space tessellation. After a 
review of available packages, Voro++ by Chris H. Rycroft [6] was adopted as it is capable to 
build Voronoi tessellation of both periodic and non-periodic systems on an equal footing. As 
the space tessellation inside the solute cavity must coincide with partitioning of the outer 
solvent region, to prevent complications in building the solute-solvent interface, we 
introduced Voro++ functionality for both solute-solute and solvent-solvent interfaces. 

 



 

 

Figure 2. Structure of the MPE matrix [Eq. (1)], with labels I-VI representing the different 
blocks for solute and solvent interactions. 

 
For a better numerical stability of the MPE algorithm, it is desirable to place a boundary 

between subcavities as close to the minimum of electronic density as possible. Therefore, the 
free-atom electron density is used for boundary definition, with the boundary between 
subcavities shifted appropriately to account for differences in the isodensity radii of the 
atomic species.  The Voro++ library provides a radical (i.e. weighted) Voronoi tessellation 
algorithm that can set a size for each atom, making it capable of producing the space 
partitioning with boundaries over low electron density regions.  

The achieved sparsity pattern of the MPE matrix A is shown in Figure 1 as mpe-ncps, 
with the physical meaning of the matrix blocks illustrated in Figure 2. In Figure 2, block II 
becomes sparse in the new implementation, corresponding to the solvent side of the 
boundary condition of the solute-solvent interface. Also, blocks V and VI are introduced 
because there were no solute-solute interfaces previously (similar to the absence of blocks III 
and IV for the mpe2017 model). Blocks IV and V are always zero by construction.  
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Figure 3. Interfaces between the MPE model subregions of the decane molecule. Big blue 
circles - carbon atoms, hydrogens are not shown. Blue dots – solvent-solute interface 

mesh. Yellow dots – solute-solute and solvent-solvent interfaces mesh. Green lines – limits 
for solute-solute interface mesh (not a periodic lattice cell). 

 
The size of matrix A was increased because of the added solute-solute interfaces, and 

corresponding boundary conditions, but the number of added rows can be reduced, because 
the number of points on the solute-solute boundaries is probably excessive now. Currently it 
is limited by the cuboid box which size is defined by a 3 Å gap to the nearest heavy atom; in 
Figure 3, this box is shown by green lines. Benchmarks are necessary to define reasonable and 
sufficient default settings that will define the number of points on the solute-solute 
interfaces, and this work is part of our future plans. 

Despite the increased size of the MPE matrix, the number of non-zero elements 
decreased dramatically due to greater sparsity. Table 1 demonstrates the difference between 
MPE matrices used by the available MPE versions in FHI-aims. For a decane molecule, the 
mpe-ncps matrix has 3.5 times less non-zero elements than the original implementation. For 
a larger system - a graphite slab of 128 atoms - the difference is even larger at 14 times 
(relatively 0.76% vs. 15.53%). This comparison is done for non-periodic slab, because earlier 
MPE implementations do not support periodic boundaries. Looking closely at the matrix 
structure (Figure 2), one can see that the number of non-zero entries in each row is constant. 
Indeed, the matrix sparsity does not depend on the number of columns (or atoms), as each 
row always has only two non-zero blocks. The number of interfacial points, and therefore the 
number of matrix rows, grows linearly with the number of atoms; hence, the total number of 
non-zero elements in the matrix is O(n), where n is the number of heavy atoms in the system. 

Currently, exploitation of the introduced sparsity for performance gain is infeasible 
because the SLE solvers supported by FHI-aims for the MPE model are not compatible with 
the new sparsity scheme. This was an unforeseen issue in the project realisation and will be 
resolved by integration of such solvers in future work. 
 



 

Table 1. Dimensions of the MPE matrix for a decane molecule (non-periodic system) with 
different MPE implementations. 

MPE version # rows # columns # of non-zero 
elements 

Portion of non-
zero elements, % 

mpe2017 [4] 6 442 1 649 10 619 637 99.97 

mpe-nc [5] 8 574 1 299 3 833 865 34.42 
mpe-ncps  

(Current project) 13 316 1 290 1 605 871 9.35 

 
 
Support of periodic boundaries for MPE model 

 
Building on the new piecewise solution, subsequent work achieved support for periodic 

boundaries in the MPE model.  We successfully implemented the capability to build interfaces 
between periodic images of subcavities and solvent subregions, with minor complications 
noted herein.  

 

Figure 4. The Au(111) slab (yellow spheres) with adsorbed CO molecule (black and red 
spheres). Small blue spheres represent the point mesh of solute-solvent interface built by 

the MPE model. Black lines represent the unit cell. 
 
With the work performed, multiple interfaces between the same subregions can now 

exist, i.e. across periodic boundaries. The change to support periodic MPE solvation required 
further refactoring of the MPE matrix construction subroutines. Furthermore, selection of the 
minimum length vector among all periodic images had to be introduced in numerous places 
of the code to manage periodicity; and a new algorithm for calculating the cavity volume was 
introduced, because the previous algorithm did not work appropriately with an infinite 
periodic system (Figure 4). The new algorithm uses a numerical integration method, so careful 



 

convergence testing has become necessary, with benchmarking to define a reasonable 
default integration parameter crucial in our future work. 
 
Extension of regression test suite 
 

To complement the outlined new functionality, a range of regression tests have been 
added to guarantee the sustainability of the newly implemented and earlier existing 
functionality. The tests for the “ghost” atoms in periodic systems have been implemented for 
all Hamiltonians robustly supported by FHI-aims: DFT, exact exchange (hybrid DFT), MP2 
(double hybrid DFT), and PBE-GW. A special test suite was also added that ensures proper 
calculation of forces acting on “ghost” atoms that is necessary for some QM/MM schemes, 
specifically supported by the ChemShell framework [3]. Several tests have been added for the 
newly implemented mpe-ncps solvent model for both periodic and non-periodic systems. 
 
Conclusions and future work 
 

The new important functionality has been added to the FHI-aims code and reliability of 
existing functionality has been ensured. Solvent effects now can be included in calculations 
of adsorption and reaction processes on material surfaces, as well as properties of materials 
themselves in solvated environments. The BSSE correction can be calculated for any periodic 
model and most popular Hamiltonians, which is particularly beneficial for adsorption on 
surfaces and in porous periodic systems like zeolites. The work provides a foundation for 
substantial acceleration of calculations with the MPE solvent model, via the dramatically 
increased sparsity of the MPE matrix. Future efforts should be focused on integration of the 
sparse linear solvers for MPE SLE, and on benchmarking of periodic systems with MPE solvents 
in order to determine optimal default settings for numerous parameters of the new method. 
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