
ARCHER2-eCSE07-6: Improving parallel performances of
the semi-implicit Particle-In-Cell code ECsim

May 13, 2025

1 OpenMP Parallelism

A large majority of the work performed in ECsim is contained within a few loops over the
particles. Specifically, for a simulation on a 2562 2D grid with 4 particle species each with
40 particles per cell in each direction (approx 4×108 particles on 1 ARCHER2 node, of the
non-IO related code ComputeMoments and ParticleMover take up the majority of the
runtime at 63.5% and 11.6% respecively. Prior to this eCSE work, OpenMP directives were
introduced around loops over particles within these functions, however race conditions
caused by updates of grid cells when looping over the particles could cause inaccurate
results. To address these issues investigations of atomics and OpenMP reductions were
performed to see whether correct solutions could be obtained without any reduction of
performance.

When using the atomic approach atomic pragmas were added prior to updates of grid
quantities, similar to:

\#pragma omp atomic
Jxhs[is][X - i][Y - j][Z - k] += temp;

in addJxh . This is called within an OpenMP parallel loop over all the particles. Un-
fortunately a significant reduction in performance was observed (see Table 1). Although
there is some increase in execution time for the initialisation and IO (as exepcted given
fewer processes would be performing those operations), the largest increase was seen when
computing the moments where there were the same number of ranks performing the oper-
ations. The reason for this increase is associated with the increased overhead of updating
the grid arrays due to the atomic operations. This change was consistent for two and four
OpenMP threads per process.

Another approach that resolves race conditions is to use reductions. OpenMP provides
reductions on individual variables, but not for class members. To address this reductions
were manually implemented by creating additional arrays that would accumulate values
for each OpenMP thread before an additional function call that sums them together.

int thread = omp_get_thread_num();
Jxhs_thread_local[is][X - i][Y - j][Z - k][thread] += weight[i][j][k];
void EMfields3D::addJxh_reduction() \{

int thread = omp_get_thread_num();
#pragma omp reduction(+:Jxhs)

1

Clair Barrass
Typewriter
Dr Elisabetta Boella (Lancaster University), Prof Giovanni Lapenta (KU Leuven, Belgium), Prof Maria Elena Innocenti (Ruhr-University Bochum, Germany), Alexei Borissov (EPCC, University of Edinburgh)

Baseline 2 OpenMP threads 4 OpenMP threads
Atomics Manual reductions Atomics Manual reductions

Initialisation 1.43177 2.19742 2.22682 4.20231 4.13472
Moment gathering 64.8253 123.223 127.070 156.927 132.552
Field calculation 0.46465 0.57558 0.57695 0.83052 0.82099
Particle mover 10.7864 13.7574 10.9444 20.0290 11.7676
IO 17.4255 46.9061 24.7954 48.7488 28.7466
Total 98.0754 193.096 169.657 237.249 183.673

Table 1: Timing of baseline, atomic and manual reduction OpenMP runs, each with 2 and
4 threads per rank. All times in seconds.

(for-loops over is, i, j, k)
Jxhs[is][i][j][k] += Jxhs_thread_local[is][i][j][k][thread];

}

This results in slightly better runtime than the atomics implementation, but it is still
significantly slower than the baseline runs. Increasing the number of threads to 4 yielded
slower results in for both atomic and manual reduction approaches, however the difference
between 2 and 4 threads was smaller for the manual reductions compared to the atomics.
This suggests a lot of the overheads were to do with setting up the OpenMP parallel
regions.

A number of other approaches were tried, for example implementing user defined
OpenMP reductions to handle classes, however they gave either incorrect results or were
impossible to compile. It was decided that using OpenMP, at least on CPUs, was not
a viable approach. Restructuring the code to not use classes which would allow the use
of built-in reductions might be a possible way forward, however it would be beyond the
scope of this work to do so in order to get the same, or perhaps slightly better performance
compared with the baseline.

2 Improving Parallel Performance

This workpackage was focused on improving the scaling performance of ECsim by investi-
gating MPI bottlenecks and improving them to reduce communication costs when running
at large scales. This work was performed after improving the memory access pattern for
the mass matrix (described in section 4) as that gave a significant performance improve-
ment and would significantly alter scaling performance. An initial profile was performed
using MAP using a 21282 grid with 64 subdomains in the x-direction, and 32 in the y-
direction. There were 2.85 × 108 particles in the simulation, and it was run on 2048 cores
for 40 timesteps with IO turned off. MAP reported a total runtime of about 133 seconds of
which 40.4% was spent on MPI communications. Of this 40.4%, more than 30% was spent
communicating data between face subdomain faces either within communicateInterp ,
communicateCenterBC or communicateNodeBC in the solver. In all cases communica-
tion is point-to-point using MPI Send recv replace . When running on a large number
of nodes the data that needs to be communicated comes from fewer grid cells per process
resulting in relatively small data transfers and a high overhead for initiating those com-
munications. In this case average bandwidth is only 1.42MB/s per rank, with a peak of
105MB/s.

There are a couple of approaches that could improve performance. One could be to

2

move away from MPI point-to-point communication in favour of remote memory access
(RMA). This approach has been shown to reduce communication time by 5 − 10% [2],
however it would require a significant refactoring of the code that was out of the scope of
the time allocated for MPI improvements for this project. A simpler approach would be
to try to combine as many of the transfers as possible into single messages. This could be
done by using MPI Pack/MPI Unpack . The existing implementation is detailed below in
pseudocode and focusing only on the x direction for simplicity

// Assembles data from vector into Xright, etc
makeCenterFace(vector, Xright, Xleft, Yright, Yleft, Zright, Zleft);
// Halo swap in X-direction
communicateGhostFace(getXright_neighbor(), getXleft_neighbor(), Xright, Xleft);
// Pack data into vector
parseFace(vector, Xright, Xleft, Yright, Yleft, Zright, Zleft);
// Pack data to communicate X edges. These get swapped in Z direction
makeNodeEdgeX(Yleft, Yright, YrightZrightEdge, YleftZleftEdge,

YleftZrightEdge, YrightZleftEdge);
// Halo swap in Z
communicateGhostFace(getZright_neighbor(), getZleft_neighbor(),

YleftZrightEdge, YleftZleftEdge);
communicateGhostFace(getZright_neighbor(), getZleft_neighbor(),

YrightZrightEdge, YrightZleftEdge);
// Pack data back into vector
parseEdgeX(vector, YrightZrightEdge, YleftZleftEdge, YleftZrightEdge, YrightZleftEdge);
// Assemble data to exchange corners
makeNodeCorner(...)
// Communicate only in the X direction (no analogues in Y or Z, names of
// arrays containing data ommitted for brevity)
communicateGhostFace(getXright_neighbor(), vct->getXleft_neighbor(), ...);
communicateGhostFace(getXright_neighbor(), vct->getXleft_neighbor(), ...);
communicateGhostFace(getXright_neighbor(), vct->getXleft_neighbor(), ...);
communicateGhostFace(getXright_neighbor(), vct->getXleft_neighbor(), ...);
// Pack data back into vector
parseCorner(vector, ...)

It turns out the communication of the edges depends on having communicated the faces
first (and likewise the corners depend on the edges) so it is not possible (at least in the
current communication setup) to collapse this all into three sets of messages, one in each
of the x, y, and z directions. However by packing the messages when communicating the
edges and the corners, cuts the number of point-to-point calls from 13 to 7.

To further increase the amount of data transferred per message instead of communi-
cating each of the fields individually, they can be communicated simultaneously. This is
achieved by allocating larger arrays that are being communicated and copying the data
in with appropriate offsets. This is key as it can further decrease the number of point-to-
point calls by a factor corresponding to the number of fields that can be communicated
simultaneously. Doing so in as many places as possible resulted in a significant reduction,
as reported by MAP from 40.4% of the compute time being spent in MPI to 27.4%, with an
overall reduction in runtime, again as reported by MAP, from 133s to 114s. Unfortunately
for unknown reasons the actual runtime when running without a profiler was unchanged,

3

and there was insufficient time available on the project to pursue further investigation
of this discrepancy. Further investigation, perhaps with other profilers, would be recom-
mended to investigate the reason for this lack of improvement. A general restructuring of
the communication pattern is also suggested as even with the implemented improvements
communication is still dominated by small messages. Something such as implementing
MPI-RMA for the halo exchanges might be worthwhile.

Strong scaling tests were performed for both before and after all the eCSE changes
described in this report (see Figure 1. IO was turned off, and two problem sizes with
grids of 1922 and 3842 were performed with 9.66 × 109 particles. Note that the 3842

problem starts with 4 nodes as that is the minimum number required to fit in memory.
All simulations were performed for 60 timesteps. The timings after the changes start out
slightly less than two times faster than before, although the distance between the lines
decreases slightly and the efficiency after the changes is not as high (although still above
70% for 64 nodes). The reason for this is that most of the gain in performance is due
to improving memory accesses, and the MPI improvements as mentioned above do not
manifest in improved performance outside profiling runs. This means communication takes
up a greater proportion of the execution time especially at larger core counts resulting in
worse scaling performance.

(a) Parallel efficiency (b) Simulation time

Figure 1: Efficiency and time to solution for strong scaling runs of 3842 and 1922 grids
with 9.66 × 109 particles. Gold lines indicate results before any of the changes introduced
in this eCSE, green lines indicate results after changes. Solid lines are the smaller problem
size while dashed are the larger.

3 IO

The final workpackage involved refactoring the IO to move away from the no longer sup-
ported H5Hut library. It was decided to follow the OpenPMD standard [3], designed
to store mesh and particle data. An OpenPMD-conformant IO may be implemented by
hand, or using the OpenPMD-api library [4]. OpenPMD-api can use both ADIOS2 and
HDF5 backends, which allows reuse of post-processing scripts with minimal changes if
using HDF5. The use of ADIOS2 is recommended for performance reasons as there are

4

more tuning options available, which will be discussed below.
The implementation is reasonably straightforward. OpenPMD provides a hierarchy

where the data is contained within a series which consists of iterations (although
one can also have one series per iteration if one wants to write a file per timestep). Each
iteration contains a Mesh structure and a Particle Species structure for each particle
species. The particle species contains a Species Record for each physical quantity (e.g.
position or momentum). Finally the spatial components of meshes or species records are
contained in Record Components .

To emulate this hierarchy the top-level writing function contains calls to functions
responsible for writing particles and the E and B fields. Each of the fields is written one
component at a time (i.e. Ex, Ey, Ez, etc) by a write fields function. Likewise, particle
data is written on a component by component basis including their positions, velocities,
id, etc. values common to all the particles within a species (e.g. charge, or charge to mass
ratio) are written as single scalars. Prior to initiating the writing, offsets are computed
into the writing arrays so that the data is placed in the correct order by rank. These are
done separately for the mesh and particles and stored in the openpmd io class. This is
done based purely on the number of ranks, mesh size and particle distribution and can
be reused for restarts. Restart functionality has also been implemented using a derived
class from openpmd io with a little bit of additional/differing functionality to account
for needing to write a different file, read data, and set the relevant values for the fields
and particles so that the code can restart the simulation.

OpenPMD-api provides a number of parameters that can be tweeked to obtain im-
proved performance, however these are mostly applicable to the ADIOS2 backend. To
compare performance of the existing HDF5 IO implementation to the new openPMD
one we ran a simulation with 50 snapshots written on a 1922 grid with 40 particles per
cell and 4 species on 1 node. In this case the number ADIOS2 aggregators and sub-
files was set to the number of tasks. These can be set with the environment variables
OPENPMD ADIOS2 BP5 NumAgg and OPENPMD ADIOS2 BP5 NumSubFiles . In practice for a
large scale run it is recommended to reduce the number of aggregators to one per node.
We didn’t have time to test what the changeover scale would be. Compared to the pre-
vious HDF5 IO implementation we obtained a speedup of about 25% with the total IO
time going from 75s to 56s.

4 General improvements

Like most PIC codes, ECsim is severely memory bound. The largest proportion of the
time is taken in GatherMoments , which computes grid values based on the particle distri-
bution. This involves incrementing arrays storing those quantities for each particle in the
simulation. Of these the most time consuming is updating the mass matrix, which comes
out to be about 50% of the runtime for a 16 node run for a 7682 grid with 9.66 × 109

particles. This is a relatively high proportion of the time as the number of particles is
quite large, and the actual time spent on updating the mass matrix will vary based on
problem size, however this is always the dominant part of the calculation for reasonably
sized problems. This update happens in addMass , and involves updating 9 4D arrays
with 9 precomputed values. To improve performance These 9 arrays were assembled into
a single 5D array with the updates running over the last index. Corresponding accessor
functions were also provided in order to access the correct subarrays throughout the code.
This reduced the amount of time spent updating the mass matrix to 20% of the runtime.
Along with a few similar optimisations elsewhere in the code, the total time for this run

5

was reduced from 105s to 52s. Other places where memory accesses may be improved
include setting particle communication buffers to default values prior to populating them.
This comprises about 17% of the time in the improved version of the code for this run.

Acknowledgements: This work was funded under the embedded CSE programme of the
ARCHER2 UK National Supercomputing Service (http://www.archer2.ac.uk)[1].

References

[1] George Beckett, Josephine Beech-Brandt, Kieran Leach, Zöe Payne, Alan Simpson,
Lorna Smith, Andy Turner, and Anne Whiting. Archer2 service description, December
2024.

[2] Nick Brown, Michael Bareford, and Michèle Weiland. Leveraging mpi rma to optimize
halo-swapping communications in monc on cray machines. Concurrency and Compu-
tation: Practice and Experience, 31(16), September 2018.

[3] Axel Huebl, Rémi Lehe, Jean-Luc Vay, David P. Grote, Ivo Sbalzarini, Stephan
Kuschel, David Sagan, Frédéric Pérez, Fabian Koller, and Michael Bussmann.
openPMD 1.1.0: Base paths for mesh- and particle- only files and updated attributes,
February 2018.

[4] Axel Huebl, Franz Poeschel, Fabian Koller, and Junmin Gu. C++ & python api for
scientific i/o with openpmd, November 2021.

6

