

ARCHER2 eCSE07-02: Improving the Performance of
Linear-Scaling BigDFT for ARCHER2 and Beyond
Arno Proeme (EPCC, University of Edinburgh), Laura E. Ratcliff (School of Chemistry, University of Bristol)

This work was funded under the embedded CSE programme of the ARCHER2 UK National
Supercomputing Service (http://www.archer2.ac.uk).

Abstract

This report details efforts to address BigDFT stability issues and performance on ARCHER2,
initially linked to one-sided MPI communication failures. Various bugs and stability issues in
BigDFT's use of one-sided MPI were identified and corrected (including improper window
object handling and zero-sized window issues), leading to significantly improved stability on
ARCHER2 and enabling larger calculations. Attempts to prototype a two-sided MPI
alternative based on both point-to-point and collective communications were made but
proved challenging to implement without wider modifications to the existing code structure.
Systematic parallel scaling analysis showed hybrid MPI+OpenMP execution is more
performant than pure MPI, especially at scale. Scaling results detailed in this report provide
a useful reference enabling users of BigDFT on ARCHER2 to better exploit resources
efficiently. Profiling suggested that MPI communication (one-sided operations, collectives
like MPI_Allreduce, and load imbalance) remains the primary performance bottleneck
limiting overall scalability despite effective OpenMP parallelization in key routines. While
stability was enhanced, optimizing MPI communication is crucial for future performance
improvements.

Objectives 1 & 2: Replacing One-sided Communications

Determination of suitable test case for development

Prior to project start BigDFT exhibited a variety of application failure scenarios on ARCHER2,
including segmentation faults and apparent deadlock (“hanging” behaviour) occurring
non-deterministically. Prior investigation had suggested the underlying cause for this to be
issues with how BigDFT uses one-sided MPI and/or issues with support for one-sided MPI in
MPI libraries or other parts of the underlying software stack that implement support for the
same. On ARCHER2 for example, switching MPI transport layer from the default of OFI to
UCX or setting MPICH_SMP_SINGLE_COPY_MODE - the choice of which mechanism to use
when sending large messages between ranks on the same node in a way that leverages their
ability to access a single shared memory - from Cray MPICH’s default of XPMEM to CMA
(which may perform less well) showed some reduction in the incidence of application
failure. These workarounds however had limited success, and failures continued to occur at
unpredictable points during application execution.

http://www.archer2.ac.uk/

In order to be able to determine the success in resolving these issues of a two-sided MPI
implementation or of any possible fixes made to the one-sided implementation, initial
project work therefore focused on identifying a test case that on ARCHER2 failed not only
deterministically but also demonstrably as a result specifically of issues associated with
BigDFT’s use of one-sided MPI. This test would ideally fail in the communication of the
potential across ranks, as this is an important step and the code includes optional
correctness checks of the implementation of this functionality during initialisation, i.e.
occurring entirely predictably and early on during application execution, which is ideal for
testing and development. A suitable test case was found by compiling BigDFT with -O0
optimisation level and running the linear scaling 2CzPN_1mols benchmark with initialisation
checks turned on (see https://github.com/aproeme/bigdft-benchmarks) with the default
(OFI) transport layer and without using CMA as a single-copy workaround. This test could be
run on just 2 ranks with 1 thread in order to further simplify debugging during development.

Exploration of failure sensitivity of one-sided MPI

The DDT debugger was used in the process of determining a suitable test case in order to
confirm whether a given segmentation fault arises from one-sided MPI and if so to try to
shed light on and potentially even fix the failure sensitivity of BigDFT’s usage of one-sided
MPI. Figure 1 shows that when BigDFT is run with two ranks that share the same node, a call
to mpi_get within the subroutine start_onesided_communication (see Figure 2) resolves to a
call to _cray_mpi_memcpy_rome (provided in /opt/cray/pe/lib64/libmpi_gnu_91.so.12) to
copy the data in question within shared memory. The segmentation fault that arises during
this operation is reported by DDT as a read or write taking place before the start of a
memory allocation.

Figure 1: DDT stack trace for deterministically failing test (2CzPN_1mols with -O0 compiled
BigDFT) showing segmentation fault resulting from call to mpi_get (see Figure 2 for code).

https://github.com/aproeme/bigdft-benchmarks

Figure 2: code context for call to MPI_Get in subroutine start_onesided_communication
responsible for segmentation fault shown in Figure 1.

Setting the Cray MPICH environment variable MPICH_OPTIMIZED_MEMCPY to 0 instructs
mpi_get to use the system’s memcpy (memcpy_ssse3) provided by glibc instead of Cray’s
version optimised for the AMD EPYC Rome processor (cray_mpi_memcpy_rome), however
this suffered from the same memory read/write error and segmentation fault.

Fixes to improve stability of one-sided MPI communication

Although the one-sided MPI communication problems in LS-BigDFT were far more severe on
ARCHER2 than on other supercomputers, following the start of the project, some seemingly
related issues were observed on other clusters. Therefore, in parallel with implementing the
prototype two-sided MPI communication approach, the one-sided communication
implementation was investigated in further detail to search for possible explanations. This
revealed the existence of a bug in the usage of an mpi window. BigDFT uses the futile library
to wrap a number of low-level Fortran operations, including MPI calls. However, the
communication of the density in LS-BigDFT (in bigdft/src/modules/rhopotential.f90)
mistakenly used the native mpi_get call, instead of the f_mpi_get_wrapper, while passing
the wrapped window object (collcom_sr%window, of type fmpi_win) instead of the window
handle (collcom_sr%window%handle). This mismatch between wrapped and native MPI
objects/calls was not picked up by compilers as the address of the structure
collcom_sr%window coincided with the address of the handle
(collcom_sr%window%handle). This bug led to undefined behaviour on ARCHER2, and has
now been fixed, with the code now calling the futile fmpi_get routine rather than the native
mpi_get call.

In addition to the above bug, a number of other small changes were made to MPI
communications which led to improved stability. First, calls to mpi_alltoallv were behind the
scenes being replaced with multiple calls to mpi_get, which had been shown to be quicker
than mpi_alltoallv in tests several years ago. This was being activated by default, whatever
the size of the data to be communicated, but more recent experiences seem to suggest this
approach is less stable. This approach (activated according to
VARIABLE_ONE_SIDED_GET_ALGO in futile/wrappers/mpi/alltoall.f90) is now only activated
if an environment variable has been set. Second, the window creation for one-sided
communications in LS-BigDFT was in some cases creating a zero-sized window. While in
principle fine according to the MPI standard, this again appeared to cause unstable
behaviour, and so the futile library has been updated to be more explicit about how to
handle such cases. Finally, calls to mpi_allreduce for communicating small scalars, have been
modified to use mpi_iallreduce, for example for calculating the trace of the Hamiltonian
matrix in LS-BigDFT (in bigdft/src/modules/get_basis.f90). For large communications, there

is a fallback to all_reduce. This removal of blocking communications has led to improved
load balancing, which again appears to have improved stability.

Individually, none of these changes were sufficient to fix the stability problems seen with
LS-BigDFT on ARCHER2, but collectively have led to significant improvements, enabling
calculations to be performed for a range of system sizes (recent tests have gone up to
around 5000 atoms) and node counts, which was not possible before the start of this
project. All of these changes have been implemented in the latest release of BigDFT, and are
therefore available to all users.

Prototype two-sided communication

The primary target for exploring the use of two-sided as an alternative to one-sided MPI is in
the communication of the potential in the subroutine start_onesided_communication
defined in /src/modules/communications.f90. The goal was to do so with minimal changes
to pre-existing code structure and logic, hence development focused on making additions in
situ with this in mind rather than designing and implementing a communication pattern
from scratch.

In the one-sided implementation each rank executes the core logic shown in simplified form
in pseudocode Listing 1. MPI window creation and fence synchronisation are handled by
calls to the futile library wrappers fmpi_* but otherwise native MPI calls are used. The comm
object passed to the subroutine is of type p2pComms, defined in
src/helpers/communications_base.f90, and contains parameter values - potentially different
for each rank - used in communication. The argument comm(joverlap) where it appears in
an MPI call in Listing 1 indicates that one or more arguments for the call are based on values
extracted from the comm held by each rank that vary depending on the loop index joverlap.

subroutine start_onesided_communication(comm, sendbuf, recvbuf, other_args)

 type(p2pComms) comm

 do ispin = 1,comm%nspin
 if ispin == 1 then
 call fmpi_win_create(comm, sendbuf)
 call fmpi_win_fence(comm)

 do joverlap = 1, comm%noverlaps
 if ispin == 1 then
 call mpi_type_create_hvector(comm(joverlap))
 call mpi_type_commit(comm(joverlap))

 if rank == comm%mpidest(joverlap) then
 call mpi_type_size(comm(joverlap))
 call mpi_type_get_extent(comm(joverlap))
 call mpi_get(recvbuf, comm(joverlap))

 end do

 end do

Listing 1: pseudocode abstraction of core one-sided communication logic in subroutine
start_onesided_communications in /src/modules/communications.f90.

The observed one-sided communication pattern is as follows. For a given ispin value each
rank obtains the data it needs by iterating over values of joverlap. The joverlap loop has as
many iterations as there are ranks in the global communicator, i.e. comm%noverlaps is equal
to the total number of ranks. The condition rank==comm%mpidest(joverlap), which checks
whether the executing rank is the destination of data and hence should issue a call to
mpi_get, is satisfied for every iteration. The target rank specified as part of the mpi_get call,
i.e. the rank that serves as the source of the data to get - not shown explicitly in Listing 1 but
identified as mpisource in the source code - is equal to joverlap-1. In other words, on each
rank the joverlap loop iterates over all ranks, getting data from one particular rank
(mpisource) in turn - including from itself - during successive iterations. By the end of the
joverlap loop each rank has obtained data (or at least issued an mpi_get call to do so) from
each other rank (as well as from itself), effectively implementing an All-to-All communication
pattern.

Although the observed communication pattern naturally suggests the use of one or more
collective two-sided communications, an approach that adhered closer to the existing code
structure and logic is to implement a substituted send/receive messaging pair as a direct
alternative to each mpi_get. Retaining the existing code structure means that point-to-point
message pairs should be non-blocking (mpi_isend/mpi_irecv) to avoid deadlock. The main
parameters needed as arguments by mpi_irecv map directly onto a subset of the mpi_get
parameters and their values passed as arguments in the existing mpi_get call on the same
rank, as shown in Table 1.

mpi_irecv
parameter

relevant mpi_get
parameter

BigDFT value to pass to mpi_irecv
(based on mpi_get argument on same rank)

buffer origin_address recvbuf(ispin_shift+istdest)

count origin_count nsize

datatype origin_datatype mpi_double_precision

source target_rank mpisource

Table 1: determination of BigDFT arguments to pass to mpi_irecv based on arguments to mpi_get on
same rank

Table 2 shows where the mpi_irecv arguments listed in Table 1 originate, highlighting how
they depend on comm and joverlap.

BigDFT variable used to form
mpi_irecv argument

value

recvbuf passed to subroutine

ispin_shift = (ispin-1)*comm%nrecvbuf

istdest = comm%comarr(4,joverlap)

nsize set by call to mpi_type_size(comm(joverlap))

mpisource = comm%comarr(1,joverlap)

Table 2: origin of argument values for mpi_irecv, showing their dependence on comm and joverlap

When it comes to mpi_isend, some of the parameters needed as arguments also relate to
mpi_get parameters as shown in Table 3. However unlike for mpi_irecv it is the values of
these mpi_get parameters used as arguments on the rank posting the matching mpi_irecv
call that should be passed to a given mpi_isend.

mpi_isend
parameter

relevant mpi_get
parameter

BigDFT value for mpi_isend
(based on mpi_get argument on matching

mpi_irecv rank)

buffer target_displacement sendbuf(target_displacement)
= sendbuf(int(isend_shift+istsource-1))

count target_count 1

datatype target_datatype comm%mpi_datatypes(joverlap)

Table 3: determination of BigDFT arguments to pass to mpi_isend based on arguments to mpi_get
on rank posting the matching mpi_irecv call

Table 4 shows where the mpi_isend arguments listed in Table 3 originate, highlighting how
they depend on comm and joverlap.

BigDFT variable used to form
mpi_isend argument

value

sendbuf passed to subroutine

isend_shift = (ispin-1)*npotarr(mpisource)

npotarr passed to subroutine

mpisource = comm%comarr(1,joverlap)

Table 4: origin of argument values for mpi_send, showing their dependence on comm and joverlap

As indicated, in order to formulate a correct mpi_isend the sending rank needs to know the
values of a number of additional parameters that in the pre-existing code are known only by

the receiving rank - communications metadata. As each rank will ultimately need to send to
every other rank to replicate the result of the one-sided communication pattern, each rank
needs to know what the values of these required parameters are on all ranks. An mpi_gather
call for each required parameter is a natural way to provide this. In principle this could be
implemented following the somewhat clumsy logic shown in Listing 2.

subroutine start_onesided_communication(comm, sendbuf, recvbuf, other_args)

 type(p2pComms) comm

 do ispin = 1,comm%nspin
 if ispin == 1 then
 call fmpi_win_create(comm, sendbuf)
 call fmpi_win_fence(comm)

! Run joverlap loop once to gather comms values required to form mpi_isends
 do joverlap = 1, comm%noverlaps
 if ispin == 1 then
 call mpi_type_create_hvector(comm(joverlap))
 call mpi_type_commit(comm(joverlap))

 if rank == comm%mpidest(joverlap) then
 call mpi_type_size(comm(joverlap))
 call mpi_type_get_extent(comm(joverlap))
 if “onesided” then
 call mpi_get(recvbuf, comm(joverlap))
 else if “twosided” then
 call mpi_gather to gather required comms values from all ranks

 end do

! Run joverlap loop again to perform two-sided communications
 do joverlap = 1, comm%noverlaps
 if ispin == 1 then
 call mpi_type_create_hvector(comm(joverlap))
 call mpi_type_commit(comm(joverlap))

 if rank == comm%mpidest(joverlap) then
 call mpi_type_size(comm(joverlap))
 call mpi_type_get_extent(comm(joverlap))
 if “onesided” then
 call mpi_get(recvbuf, comm(joverlap))
 else if “twosided” then
 call mpi_irecv(from mpisource)
 do j = 1, comm%noverlaps
 mpidest = j-1
 call mpi_isend(to mpidest) ! send to all ranks
 end do

 end do

 if “twosided” then
 call mpi_wait on both mpi_irecv and mpi_isend requests

 end do

Listing 2: pseudocode abstraction of alternative two-sided communication logic in subroutine
start_onesided_communications in /src/modules/communications.f90.

A more elegant solution is to use collectives to distribute not only the required
communications metadata but also the potential data itself, as this would preclude the need
to run the joverlap loop twice and could in fact be used to avoid the joverlap loop altogether.

For all variations of attempted approaches - point-to-point versus collectives - however, code
complexity including indirection associated with the apparent generality of the existing
one-sided implementation proved to be a confounding factor in attempting to formulate
correctly specified matching mpi_isend calls and, by extension, collectives with similar
effect. This is reflected by the use of the comm object held by each rank and the inability - all
else being equal - to make any simplifying assumptions about the rank-specificity of any
communication metadata embedded within it, as well as the complexities associated with
specification of a custom MPI hvector on each rank for each joverlap value.

As an example of the rapidly expanding scope of communications metadata that would need
to be distributed prior to successful two-sided communication of potential data in this
approach and difficulties associated with this, consider the identification of the send buffer
for mpi_isend listed in Table 3. This identification was motivated by the facts that the base
address of the MPI window created by each rank is sendbuf(1) and that target_displacement
in mpi_get specifies the offset position within that buffer for a given target rank. Hence the
send buffer for the mpi_isend originating from that same rank should be
sendbuf(target_displacement), as listed in Table 3. However closer consideration shows that
the datatype for the target buffer (source of data) in mpi_get is
comm%mpi_datatypes(joverlap), which consists of an mpi_hvector type specific to both the
get-posting rank and the particular value of joverlap. In addition, mpi_get specifies two
different data types and counts, namely count nsize for datatype mpi_double_precision on
the origin (receiving) side, versus count 1 of the abovementioned custom MPI hvector on
the target (sending) side. Attempts to implement and debug communication of prerequisite
values associated with the MPI hvector datatype such as its size ran into subtleties regarding
the difference between mpi_type_get_extent and mpi_type_get_true_extent.

Attempts to develop a fully functioning two-sided prototype were not successful. However
development prototypes exploring implementation of two-sided MPI communication of the
potential can be found at https://github.com/aproeme/bigdft-suite (branch “twosided”).

A better approach for implementing two-sided communication than pursued in this project
is likely to be to forgo the attempt at tightly integrated in-situ addition of two-sided
communication as an alternative within the start_onesided_communication subroutine and
based on minimal changes to the code therein. Instead, a more productive approach may be
to revisit at a higher level the definition of the p2pComms type object and simplify both its
structure by eliminating replication of communication metadata where possible and how it

https://github.com/aproeme/bigdft-suite

is used to implement one-sided communication. This might make a close integration of
two-sided MPI into the then one-sided implementation more feasible. Alternatively, the
two-sided approach could then be developed separately and more naturally without being
tied as closely to the one-sided implementation.

Objective 3: Improve OpenMP Performance

A systematic parallel scaling analysis of overall application runtime was performed on
ARCHER2 for a number of benchmarks of varying system sizes (number of atoms) spanning
the linear scaling (LS) and cubic scaling algorithms that are of primary interest, including
isolation of the initialisation stage that dominates fragment calculations for the former and
periodic boundary conditions for the latter. Although calculations for larger systems are also
run in production, the number of atoms in these benchmarks were chosen to allow
investigation of scaling trends and bottlenecks using convenient amounts of computational
resources, and with an understanding of the underlying algorithm informing us that
conclusions about the limits on performance at this scale should generalise to the limits on
performance of larger systems on larger node counts.

The main goal of this analysis was as a first step to provide a context to better execute and
draw conclusions from targeted profiling - performed using CrayPAT - aimed at identifying
OpenMP threading efficiency and potential improvements thereon. In addition, the scaling
results themselves should serve to inform better utilisation of ARCHER2 by users of the
code.

In all cases parallel efficiency was computed relative to single node performance for pure
MPI - 128 ranks and 1 thread per rank - even though this typically does not reflect the
smallest possible scale at which a given problem could be run as this is the most relevant
reference point on ARCHER2 given enforced exclusive node allocation. Although absolute
efficiencies will vary when computed with reference to smaller scale calculations,
conclusions regarding the underlying trends in performance remain valid. Results for three
identical independent runs were averaged for every configuration explored, and variability
determined to be well below 1% of the mean in many cases and never above 5%.
Benchmarks used are available at https://github.com/aproeme/bigdft-benchmarks. For the
sake of reproducibility and potential further analysis results of all experiments is available at
https://github.com/aproeme/bigdft-benchmarking-profiling/ and scripts used to submit
jobs, extract timings and compute statistics can be found at
https://github.com/aproeme/benchmarking (latest commit at time of writing - 8117de8).

What follows below is a summary of observed trends in performance as well as insights from
profiling into contributing factors, including the effects of OpenMP threading and MPI
parallelism, and observations on the efficiencies thereof and potential improvements
identified.

https://github.com/aproeme/bigdft-benchmarks
https://github.com/aproeme/bigdft-benchmarking-profiling/
https://github.com/aproeme/benchmarking

Linear scaling

Figure 3: Parallel efficiency scaling of overall application walltime for 2CzPN_1mols benchmark with
linear scaling (LS) algorithm. Walltime for 1 node 128mpi ⨉ 1omp reference configuration: 83s.

Figure 4: Parallel efficiency scaling of initialisation (INIT) walltime for 2CzPN_1mols benchmark for
linear scaling (LS) algorithm, representative of performance for fragment calculations. Walltime for 1
node 128mpi ⨉ 1omp reference configuration: 7.5s.

Figure 5: Parallel efficiency scaling of overall application walltime for 2CzPN_10mols benchmark with
linear scaling (LS) algorithm. Walltime for 1 node 128mpi ⨉ 1omp reference configuration: 1560s.

Figure 6: Parallel efficiency scaling of initialisation (INIT) walltime for 2CzPN_10mols benchmark for
linear scaling (LS) algorithm, representative of performance for fragment calculations. Walltime for 1
node 128mpi ⨉ 1omp reference configuration: 88.3s.

Figure 7: Parallel efficiency scaling of overall application walltime for 2CzPN_20mols benchmark with
linear scaling (LS) algorithm. Walltime for 1 node 128mpi ⨉ 1omp reference configuration: 3810s.

Figure 8: Parallel efficiency scaling of initialisation (INIT) walltime for 2CzPN_20mols benchmark for
linear scaling (LS) algorithm, representative of performance for fragment calculations. Walltime for 1

node 128mpi ⨉ 1omp reference configuration: 239s.

Globally speaking increasing system size - e.g. from 2CzPN_1mols (54 atoms) to
2CzPN_10mols (540 atoms) to 2CzPN_20mols (1080 atoms) - extends the scale at which
reasonable parallel efficiency can be maintained or, equivalently, shows greater parallel
efficiency at any given corecount, not surprising as the total amount of computational work
per rank and thread grows relative to parallelisation overheads.

It is clear that pure MPI execution - 128 ranks per node ⨉ 1 thread per rank - is almost never
the most performant use of a given number of nodes (cores) and that using multiple threads
per rank is essential for obtaining best performance on any given number of nodes.
Additionally, in attempting to retain parallel efficiency when scaling out to run on more
nodes the optimal number of threads per rank increases for larger node counts. In other
words, a strategy of deciding on an optimally performing hybrid execution configuration
based on single-node experiments will not yield optimal performance at larger scale.

The parallel scaling behaviour of fragment calculations, which are approximated in our
analysis by focusing purely on the initialisation (INIT) time of the same linear scaling
benchmark runs, follows a roughly similar trend.

Sampling-based profiling was performed using CrayPAT to gain insight into why this is, i.e.
into how the net observed performance trends result from the interplay of MPI and
OpenMP parallelisation, and whether - and if so, how - the use of OpenMP in BigDFT could
be improved to further support efficient parallel scaling. It should be noted that due to
memory constraints faced when profiling it was only possible to profile runs with 1 or 2
threads per rank. Nonetheless this yielded the following key insights into global scaling
behaviour:

● In single-node runs the percentage of time spent in MPI calls is significant (20%-45%)
but still generally less than time spent within BigDFT itself (“USER” time in profiling
terms), and smaller when fewer ranks and more threads per rank are used.
MPI_ALLREDUCE is by far the most prominent MPI call, with MPI_BARRIER also
significant and MPI_WAIT and MPI_WIN_CREATE also appearing but less significantly.

● As the number of nodes and ranks increases, the percentage of time spent in MPI
routines grows substantially and becomes the dominant contributor to execution
time, i.e. exceeding the time spent in BigDFT proper. At larger scales, MPI_GET and
MPI_WIN_FENCE often become the dominant MPI operations, sometimes exhibiting
high imbalance. MPI_ALLREDUCE also remains significant.

In other words, globally speaking overall performance is primarily limited by MPI
communication, particularly one-sided operations and collectives, as the scale (number of
nodes and ranks) increases. Load imbalance across ranks and nodes also contributes
significantly to the bottlenecks at larger scales. The reason why multithreading is able to
alleviate this bottleneck somewhat at a given node count is because it can reduce the total
number of ranks and associated communication overheads without introducing equal or
greater combined overheads and inefficiencies through OpenMP-parallelisation.
Suggestions to run with reordered rank placement as suggested by CrayPAT for a number of
runs might help improve work balance across ranks. Optimizing the use of MPI collective and
one-sided communications should help (as might replacing one-sided communications
altogether).

We investigated whether the existing OpenMP implementation in BigDFT could be improved
and indeed whether OpenMP might be added where not yet present in order to better
alleviate the MPI bottleneck. Of the time spent in BigDFT itself the subroutine

sparsemm_new (defined in the sparsematrix module, part of the CheSS library) was clearly
dominant across benchmarks and node counts, followed by sumrho_for_TMBs (defined in
the rhopotential module). The subroutine sequential_acces_matrix_fast2 (also in the
sparsematrix module) also appeared, but less significantly. These subroutines are all already
parallelised using OpenMP. Of these, sparsemm_new and sequential_acces_matrix_fast2
sometimes show significant imbalance between ranks. However imbalance percentages
between threads in an OpenMP team within a rank for the main OpenMP-parallelised
subroutines are often low. Hence this likely reflects imbalance across MPI ranks, possibly as
a result of unequal work distribution, rather than poor OpenMP parallelization within a rank.
Functions related to OpenMP runtime overheads like gomp_team_barrier_wait_end or
GOMP_parallel appear occasionally, indicating some overhead, though usually small.

Further work could be done to verify the distribution of work for OpenMP parallel regions
across ranks and the degree of imbalance between threads within a rank, especially for
larger numbers of threads per rank as this could not be done using CrayPAT as a result of
previously mentioned memory constraints. If intrateam thread imbalance were to be found
to grow significantly for higher threadcounts it would be worth investigating scheduling as
starting point.

Cubic scaling

Figure 9: Parallel efficiency scaling of overall application walltime for 2CzPN_1mols benchmark with
cubic scaling algorithm. Walltime for 1 node 128mpi ⨉ 1omp reference configuration: 63s.

Figure 10: Parallel efficiency scaling of overall application walltime for 2CzPN_10mols benchmark
with cubic scaling algorithm. Walltime for 1 node 128mpi ⨉ 1omp reference configuration: 933.5s.

Figure 11: Parallel efficiency scaling of overall application walltime for Ga2O3_113_1051 benchmark
(periodic boundary conditions) with cubic scaling algorithm. Walltime for 1 node 128mpi ⨉ 1omp
reference configuration: 80s.

Scaling trends for the cubic scaling algorithm were found to be globally similar to those for
the linear scaling algorithm, including for the Ga2O3_113_1051 benchmark (160 atoms),
which uses periodic boundary conditions, but with benchmarks typically benefiting from a
larger number of threads per rank for optimal performance compared to the linear scaling
algorithm. For a relatively small system such as the 2CzPN_1mols benchmark (54 atoms) this
effect is dramatic, with an optimal thread count of 8 or 16 threads per rank giving between
3⨉ and 8⨉ times faster performance than pure MPI execution on the same number of cores.

Profiling showed that as for the linear scaling algorithm total time spent in MPI is significant
and grows to equal or exceed time spent in BigDFT code as the total number of ranks
increases to and beyond the limit of good parallel efficiency, albeit somewhat less drastically
than for the linear scaling algorithm. Again MPI_ALLREDUCE is consistently a top time
consumer, showing increasing cost and imbalance as the total number of ranks increases.
Other calls like MPI_GET, MPI_WIN_FENCE, and MPI_WAIT also become significant at the
largest scale, exhibiting high imbalance. As for linear scaling, addressing these imbalances,
e.g. by using custom rank ordering as suggested by CrayPAT for some multi-node runs, might
help improve scalability. Optimizing the use of MPI collective and one-sided communications
should help (as might replacing one-sided communications altogether).

With regards to BigDFT itself, for 2CzPN_* benchmarks the subroutines convolkinetic and
convolkinetict dominated consistently, and comb_rot_grow_* and comb_rot_shrink_* (for
lower rank counts) subroutine variants also appeared as secondary top contributors. For the
Ga2O3_113_1051 benchmark with periodic boundary conditions the dominant subroutine is
convolut_kinetic_per_sdc, with syn_rot_per, convrot_n_per, acc_from_tensprod, and
apply_w appearing as secondary top contributors. These subroutines, many of which are
part of BigDFT suite’s Orbital Manipulations library, are all already OpenMP parallel. For all
of these, the general observed trend is that imbalance across ranks grows with increasing
rank count, but with usually relatively low imbalance between threads in a team on a given
rank. As for linear scaling this likely reflects imbalance across MPI ranks as a result of
unequal work distribution rather than poor OpenMP parallelization within a rank. Further
work could be done to verify the distribution of work for OpenMP parallel regions across
ranks and the degree of imbalance between threads within a rank for larger numbers of
threads per rank. If intrateam thread imbalance were to be found to grow significantly for
higher thread counts it would be worth investigating scheduling as a starting point.

One difference compared to profiling results for the linear scaling algorithm is that there are
not insignificant contributions from calls to BLAS (between 1% and 7% of total time), namely
mkl_blas_def_dgemm_kernel_zen, mkl_blas_def_xdgemv, mkl_blas_avx512_strmm_sm,
and from the LAPACK subroutine DAXPY (2% - 5%).

	ARCHER2 eCSE07-02: Improving the Performance of Linear-Scaling BigDFT for ARCHER2 and Beyond
	Abstract
	Objectives 1 & 2: Replacing One-sided Communications
	
	Determination of suitable test case for development
	Exploration of failure sensitivity of one-sided MPI
	Fixes to improve stability of one-sided MPI communication
	Prototype two-sided communication

	Objective 3: Improve OpenMP Performance
	Linear scaling
	Cubic scaling
	

