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Abstract 

This report details efforts to address BigDFT stability issues and performance on ARCHER2, 
initially linked to one-sided MPI communication failures. Various bugs and stability issues in 
BigDFT's use of one-sided MPI were identified and corrected (including improper window 
object handling and zero-sized window issues), leading to significantly improved stability on 
ARCHER2 and enabling larger calculations. Attempts to prototype a two-sided MPI 
alternative based on both point-to-point and collective communications were made but 
proved challenging to implement without wider modifications to the existing code structure. 
Systematic parallel scaling analysis showed hybrid MPI+OpenMP execution is more 
performant than pure MPI, especially at scale. Scaling results detailed in this report provide 
a useful reference enabling users of BigDFT on ARCHER2 to better exploit resources 
efficiently. Profiling suggested that MPI communication (one-sided operations, collectives 
like MPI_Allreduce, and load imbalance) remains the primary performance bottleneck 
limiting overall scalability despite effective OpenMP parallelization in key routines. While 
stability was enhanced, optimizing MPI communication is crucial for future performance 
improvements. 

 

Objectives 1 & 2: Replacing One-sided Communications 
 

Determination of suitable test case for development 
 
Prior to project start BigDFT exhibited a variety of application failure scenarios on ARCHER2,  
including segmentation faults and apparent deadlock (“hanging” behaviour) occurring 
non-deterministically. Prior investigation had suggested the underlying cause for this to be 
issues with how BigDFT uses one-sided MPI and/or issues with support for one-sided MPI in 
MPI libraries or other parts of the underlying software stack that implement support for the 
same. On ARCHER2 for example, switching MPI transport layer from the default of OFI to 
UCX or setting MPICH_SMP_SINGLE_COPY_MODE - the choice of which mechanism to use 
when sending large messages between ranks on the same node in a way that leverages their 
ability to access a single shared memory - from Cray MPICH’s default of XPMEM to CMA 
(which may perform less well) showed some reduction in the incidence of application 
failure. These workarounds however had limited success, and failures continued to occur at 
unpredictable points during application execution.  

http://www.archer2.ac.uk/


 

 
In order to be able to determine the success in resolving these issues of a two-sided MPI 
implementation or of any possible fixes made to the one-sided implementation, initial 
project work therefore focused on identifying a test case that on ARCHER2 failed not only 
deterministically but also demonstrably as a result specifically of issues associated with 
BigDFT’s use of one-sided MPI. This test would ideally fail in the communication of the 
potential across ranks, as this is an important step and the code includes optional 
correctness checks of the implementation of this functionality during initialisation, i.e. 
occurring entirely predictably and early on during application execution, which is ideal for 
testing and development. A suitable test case was found by compiling BigDFT with -O0 
optimisation level and running the linear scaling 2CzPN_1mols benchmark with initialisation 
checks turned on (see https://github.com/aproeme/bigdft-benchmarks) with the default 
(OFI) transport layer and without using CMA as a single-copy workaround. This test could be 
run on just 2 ranks with 1 thread in order to further simplify debugging during development. 
 

Exploration of failure sensitivity of one-sided MPI 
 
The DDT debugger was used in the process of determining a suitable test case in order to 
confirm whether a given segmentation fault arises from one-sided MPI and if so to try to 
shed light on and potentially even fix the failure sensitivity of BigDFT’s usage of one-sided 
MPI. Figure 1 shows that when BigDFT is run with two ranks that share the same node, a call 
to mpi_get within the subroutine start_onesided_communication (see Figure 2) resolves to a 
call to _cray_mpi_memcpy_rome (provided in /opt/cray/pe/lib64/libmpi_gnu_91.so.12) to 
copy the data in question within shared memory. The segmentation fault that arises during 
this operation is reported by DDT as a read or write taking place before the start of a 
memory allocation.  
 

 
Figure 1: DDT stack trace for deterministically failing test (2CzPN_1mols with -O0 compiled 
BigDFT) showing segmentation fault resulting from call to mpi_get (see Figure 2 for code).  
 
 

https://github.com/aproeme/bigdft-benchmarks


 

 
Figure 2: code context for call to MPI_Get in subroutine start_onesided_communication 
responsible for segmentation fault shown in Figure 1.   
 
Setting the Cray MPICH environment variable MPICH_OPTIMIZED_MEMCPY to 0 instructs 
mpi_get to use the system’s memcpy (memcpy_ssse3) provided by glibc instead of Cray’s 
version optimised for the AMD EPYC Rome processor (cray_mpi_memcpy_rome), however 
this suffered from the same memory read/write error and segmentation fault.  
 

Fixes to improve stability of one-sided MPI communication 
 
Although the one-sided MPI communication problems in LS-BigDFT were far more severe on 
ARCHER2 than on other supercomputers, following the start of the project, some seemingly 
related issues were observed on other clusters. Therefore, in parallel with implementing the 
prototype two-sided MPI communication approach, the one-sided communication 
implementation was investigated in further detail to search for possible explanations. This 
revealed the existence of a bug in the usage of an mpi window. BigDFT uses the futile library 
to wrap a number of low-level Fortran operations, including MPI calls. However, the 
communication of the density in LS-BigDFT (in bigdft/src/modules/rhopotential.f90) 
mistakenly used the native mpi_get call, instead of the f_mpi_get_wrapper, while passing 
the wrapped window object (collcom_sr%window, of type fmpi_win) instead of the window 
handle (collcom_sr%window%handle). This mismatch between wrapped and native MPI 
objects/calls was not picked up by compilers as the address of the structure 
collcom_sr%window coincided with the address of the handle 
(collcom_sr%window%handle). This bug led to undefined behaviour on ARCHER2, and has 
now been fixed, with the code now calling the futile fmpi_get routine rather than the native 
mpi_get call. 
 
In addition to the above bug, a number of other small changes were made to MPI 
communications which led to improved stability. First, calls to mpi_alltoallv were behind the 
scenes being replaced with multiple calls to mpi_get, which had been shown to be quicker 
than mpi_alltoallv in tests several years ago. This was being activated by default, whatever 
the size of the data to be communicated, but more recent experiences seem to suggest this 
approach is less stable. This approach (activated according to 
VARIABLE_ONE_SIDED_GET_ALGO in futile/wrappers/mpi/alltoall.f90) is now only activated 
if an environment variable has been set. Second, the window creation for one-sided 
communications in LS-BigDFT was in some cases creating a zero-sized window. While in 
principle fine according to the MPI standard, this again appeared to cause unstable 
behaviour, and so the futile library has been updated to be more explicit about how to 
handle such cases. Finally, calls to mpi_allreduce for communicating small scalars, have been 
modified to use mpi_iallreduce, for example for calculating the trace of the Hamiltonian 
matrix in LS-BigDFT (in bigdft/src/modules/get_basis.f90). For large communications, there 



 

is a fallback to all_reduce. This removal of blocking communications has led to improved 
load balancing, which again appears to have improved stability. 
 
Individually, none of these changes were sufficient to fix the stability problems seen with 
LS-BigDFT on ARCHER2, but collectively have led to significant improvements, enabling 
calculations to be performed for a range of system sizes (recent tests have gone up to 
around 5000 atoms) and node counts, which was not possible before the start of this 
project. All of these changes have been implemented in the latest release of BigDFT, and are 
therefore available to all users. 
 

Prototype two-sided communication 
 
The primary target for exploring the use of two-sided as an alternative to one-sided MPI is in 
the communication of the potential in the subroutine start_onesided_communication 
defined in /src/modules/communications.f90. The goal was to do so with minimal changes 
to pre-existing code structure and logic, hence development focused on making additions in 
situ with this in mind rather than designing and implementing a communication pattern 
from scratch. 
 
In the one-sided implementation each rank executes the core logic shown in simplified form 
in pseudocode Listing 1. MPI window creation and fence synchronisation are handled by 
calls to the futile library wrappers fmpi_* but otherwise native MPI calls are used. The comm 
object passed to the subroutine is of type p2pComms, defined in 
src/helpers/communications_base.f90, and contains parameter values - potentially different 
for each rank - used in communication. The argument comm(joverlap) where it appears in 
an MPI call in Listing 1 indicates that one or more arguments for the call are based on values 
extracted from the comm held by each rank that vary depending on the loop index joverlap.  
 

subroutine start_onesided_communication(comm, sendbuf, recvbuf, other_args) 
 
  type(p2pComms) comm 
 
  do ispin = 1,comm%nspin 
    if ispin == 1 then                 
      call fmpi_win_create(comm, sendbuf) 
      call fmpi_win_fence(comm) 
 
    do joverlap = 1, comm%noverlaps 
      if ispin == 1 then               
        call mpi_type_create_hvector(comm(joverlap)) 
        call mpi_type_commit(comm(joverlap)) 
   
      if rank == comm%mpidest(joverlap) then 
        call mpi_type_size(comm(joverlap)) 
        call mpi_type_get_extent(comm(joverlap)) 
        call mpi_get(recvbuf, comm(joverlap)) 
 
    end do 



 

  end do 

Listing 1: pseudocode abstraction of core one-sided communication logic in subroutine 
start_onesided_communications in /src/modules/communications.f90.  
 
The observed one-sided communication pattern is as follows. For a given ispin value each 
rank obtains the data it needs by iterating over values of joverlap. The joverlap loop has as 
many iterations as there are ranks in the global communicator, i.e. comm%noverlaps is equal 
to the total number of ranks. The condition rank==comm%mpidest(joverlap), which checks 
whether the executing rank is the destination of data and hence should issue a call to 
mpi_get, is satisfied for every iteration. The target rank specified as part of the mpi_get call, 
i.e. the rank that serves as the source of the data to get - not shown explicitly in Listing 1 but 
identified as mpisource in the source code - is equal to joverlap-1. In other words, on each 
rank the joverlap loop iterates over all ranks, getting data from one particular rank 
(mpisource) in turn - including from itself - during successive iterations. By the end of the 
joverlap loop each rank has obtained data (or at least issued an mpi_get call to do so) from 
each other rank (as well as from itself), effectively implementing an All-to-All communication 
pattern.  
 
Although the observed communication pattern naturally suggests the use of one or more 
collective two-sided communications, an approach that adhered closer to the existing code 
structure and logic is to implement a substituted send/receive messaging pair as a direct 
alternative to each mpi_get. Retaining the existing code structure means that point-to-point 
message pairs should be non-blocking (mpi_isend/mpi_irecv) to avoid deadlock. The main 
parameters needed as arguments by mpi_irecv map directly onto a subset of the mpi_get 
parameters and their values passed as arguments in the existing mpi_get call on the same 
rank, as shown in Table 1.  
 

mpi_irecv 
parameter 

relevant mpi_get 
parameter 

BigDFT value to pass to mpi_irecv  
(based on mpi_get argument on same rank) 

 

buffer origin_address recvbuf(ispin_shift+istdest) 

count origin_count nsize 

datatype origin_datatype mpi_double_precision 

source target_rank mpisource 

Table 1: determination of BigDFT arguments to pass to mpi_irecv based on arguments to mpi_get on 
same rank  

 

Table 2 shows where the mpi_irecv arguments listed in Table 1 originate, highlighting how 
they depend on comm and joverlap.  
 
 
 
 



 

BigDFT variable used to form 
mpi_irecv argument  

value 

recvbuf passed to subroutine 

ispin_shift = (ispin-1)*comm%nrecvbuf 

istdest = comm%comarr(4,joverlap) 

nsize set by call to mpi_type_size(comm(joverlap)) 

mpisource = comm%comarr(1,joverlap) 

Table 2: origin of argument values for mpi_irecv, showing their dependence on comm and joverlap 

 
When it comes to mpi_isend, some of the parameters needed as arguments also relate to 
mpi_get parameters as shown in Table 3. However unlike for mpi_irecv it is the values of 
these mpi_get parameters used as arguments on the rank posting the matching mpi_irecv 
call that should be passed to a given mpi_isend.  
 

mpi_isend 
parameter 

relevant mpi_get 
parameter 

BigDFT value for mpi_isend 
(based on mpi_get argument on matching 

mpi_irecv rank) 

buffer target_displacement   sendbuf(target_displacement) 
= sendbuf(int(isend_shift+istsource-1)) 

count target_count 1 

datatype target_datatype comm%mpi_datatypes(joverlap) 

Table 3: determination of BigDFT arguments to pass to mpi_isend based on  arguments to mpi_get 
on rank posting the matching mpi_irecv call 

 

Table 4 shows where the mpi_isend arguments listed in Table 3 originate, highlighting how 
they depend on comm and joverlap.  
 

BigDFT variable used to form 
mpi_isend argument 

value 

sendbuf passed to subroutine 

isend_shift = (ispin-1)*npotarr(mpisource) 

npotarr passed to subroutine 

mpisource = comm%comarr(1,joverlap) 

Table 4: origin of argument values for mpi_send, showing their dependence on comm and joverlap 
 
As indicated, in order to formulate a correct mpi_isend the sending rank needs to know the 
values of a number of additional parameters that in the pre-existing code are known only by 



 

the receiving rank - communications metadata. As each rank will ultimately need to send to 
every other rank to replicate the result of the one-sided communication pattern, each rank 
needs to know what the values of these required parameters are on all ranks. An mpi_gather 
call for each required parameter is a natural way to provide this. In principle this could be 
implemented following the somewhat clumsy logic shown in Listing 2.  
 

subroutine start_onesided_communication(comm, sendbuf, recvbuf, other_args) 
 
  type(p2pComms) comm 
 
  do ispin = 1,comm%nspin 
    if ispin == 1 then                 
      call fmpi_win_create(comm, sendbuf) 
      call fmpi_win_fence(comm) 
 
! Run joverlap loop once to gather comms values required to form mpi_isends 
    do joverlap = 1, comm%noverlaps 
      if ispin == 1 then               
        call mpi_type_create_hvector(comm(joverlap)) 
        call mpi_type_commit(comm(joverlap)) 
   
      if rank == comm%mpidest(joverlap) then 
        call mpi_type_size(comm(joverlap)) 
        call mpi_type_get_extent(comm(joverlap)) 
        if “onesided” then 
          call mpi_get(recvbuf, comm(joverlap)) 
        else if “twosided” then 
          call mpi_gather to gather required comms values from all ranks 
     
    end do 
     
! Run joverlap loop again to perform two-sided communications 
    do joverlap = 1, comm%noverlaps 
      if ispin == 1 then               
        call mpi_type_create_hvector(comm(joverlap)) 
        call mpi_type_commit(comm(joverlap)) 
   
      if rank == comm%mpidest(joverlap) then 
        call mpi_type_size(comm(joverlap)) 
        call mpi_type_get_extent(comm(joverlap)) 
        if “onesided” then 
          call mpi_get(recvbuf, comm(joverlap)) 
        else if “twosided” then 
          call mpi_irecv(from mpisource) 
          do j = 1, comm%noverlaps       
            mpidest = j-1 
            call mpi_isend(to mpidest)               ! send to all ranks  
          end do 
 
    end do 
 



 

    if “twosided” then 
      call mpi_wait on both mpi_irecv and mpi_isend requests 
 
  end do 

Listing 2: pseudocode abstraction of alternative two-sided communication logic in subroutine 
start_onesided_communications in /src/modules/communications.f90.  
 
A more elegant solution is to use collectives to distribute not only the required 
communications metadata but also the potential data itself, as this would preclude the need 
to run the joverlap loop twice and could in fact be used to avoid the joverlap loop altogether.   
 
For all variations of attempted approaches - point-to-point versus collectives - however, code 
complexity including indirection associated with the apparent generality of the existing 
one-sided implementation proved to be a confounding factor in attempting to formulate 
correctly specified matching mpi_isend calls and, by extension, collectives with similar 
effect. This is reflected by the use of the comm object held by each rank and the inability - all 
else being equal - to make any simplifying assumptions about the rank-specificity of any 
communication metadata embedded within it, as well as the complexities associated with 
specification of a custom MPI hvector on each rank for each joverlap value.  
 
As an example of the rapidly expanding scope of communications metadata that would need 
to be distributed prior to successful two-sided communication of potential data in this 
approach and difficulties associated with this, consider the identification of the send buffer 
for mpi_isend listed in Table 3. This identification was motivated by the facts that the base 
address of the MPI window created by each rank is sendbuf(1) and that target_displacement 
in mpi_get specifies the offset position within that buffer for a given target rank. Hence the 
send buffer for the mpi_isend originating from that same rank should be 
sendbuf(target_displacement), as listed in Table 3. However closer consideration shows that 
the datatype for the target buffer (source of data) in mpi_get is 
comm%mpi_datatypes(joverlap), which consists of an mpi_hvector type specific to both the 
get-posting rank and the particular value of joverlap. In addition, mpi_get specifies two 
different data types and counts, namely count nsize for datatype mpi_double_precision on 
the origin (receiving) side, versus count 1 of the abovementioned custom MPI hvector on 
the target (sending) side. Attempts to implement and debug communication of prerequisite 
values associated with the MPI hvector datatype such as its size ran into subtleties regarding 
the difference between mpi_type_get_extent and mpi_type_get_true_extent.  
 
Attempts to develop a fully functioning two-sided prototype were not successful. However 
development prototypes exploring implementation of two-sided MPI communication of the 
potential can be found at https://github.com/aproeme/bigdft-suite (branch “twosided”). 
 
A better approach for implementing two-sided communication than pursued in this project 
is likely to be to forgo the attempt at tightly integrated in-situ addition of two-sided 
communication as an alternative within the start_onesided_communication subroutine and 
based on minimal changes to the code therein. Instead, a more productive approach may be 
to revisit at a higher level the definition of the p2pComms type object and simplify both its 
structure by eliminating replication of communication metadata where possible and how it 

https://github.com/aproeme/bigdft-suite


 

is used to implement one-sided communication. This might make a close integration of 
two-sided MPI into the then one-sided implementation more feasible. Alternatively, the 
two-sided approach could then be developed separately and more naturally without being 
tied as closely to the one-sided implementation. 

Objective 3: Improve OpenMP Performance 
 
A systematic parallel scaling analysis of overall application runtime was performed on 
ARCHER2 for a number of benchmarks of varying system sizes (number of atoms) spanning 
the linear scaling (LS) and cubic scaling algorithms that are of primary interest, including 
isolation of the initialisation stage that dominates fragment calculations for the former and 
periodic boundary conditions for the latter. Although calculations for larger systems are also 
run in production, the number of atoms in these benchmarks were chosen to allow 
investigation of scaling trends and bottlenecks using convenient amounts of computational 
resources, and with an understanding of the underlying algorithm informing us that 
conclusions about the limits on performance at this scale should generalise to the limits on 
performance of larger systems on larger node counts.  
 
The main goal of this analysis was as a first step to provide a context to better execute and 
draw conclusions from targeted profiling - performed using CrayPAT - aimed at identifying 
OpenMP threading efficiency and potential improvements thereon. In addition, the scaling 
results themselves should serve to inform better utilisation of ARCHER2 by users of the 
code.  
 
In all cases parallel efficiency was computed relative to single node performance for pure 
MPI - 128 ranks and 1 thread per rank - even though this typically does not reflect the 
smallest possible scale at which a given problem could be run as this is the most relevant 
reference point on ARCHER2 given enforced exclusive node allocation. Although absolute 
efficiencies will vary when computed with reference to smaller scale calculations, 
conclusions regarding the underlying trends in performance remain valid. Results for three 
identical independent runs were averaged for every configuration explored, and variability 
determined to be well below 1% of the mean in many cases and never above 5%. 
Benchmarks used are available at https://github.com/aproeme/bigdft-benchmarks. For the 
sake of reproducibility and potential further analysis results of all experiments is available at 
https://github.com/aproeme/bigdft-benchmarking-profiling/ and scripts used to submit 
jobs, extract timings and compute statistics can be found at 
https://github.com/aproeme/benchmarking (latest commit at time of writing - 8117de8).  
 
What follows below is a summary of observed trends in performance as well as insights from 
profiling into contributing factors, including the effects of OpenMP threading and MPI 
parallelism, and observations on the efficiencies thereof and potential improvements 
identified.  
 

https://github.com/aproeme/bigdft-benchmarks
https://github.com/aproeme/bigdft-benchmarking-profiling/
https://github.com/aproeme/benchmarking


 

Linear scaling 

 
Figure 3: Parallel efficiency scaling of overall application walltime for 2CzPN_1mols benchmark with 
linear scaling (LS) algorithm. Walltime for 1 node 128mpi ⨉ 1omp reference configuration: 83s.  

 

 
Figure 4: Parallel efficiency scaling of initialisation (INIT) walltime for 2CzPN_1mols benchmark  for 
linear scaling (LS) algorithm, representative of performance for fragment calculations. Walltime for 1 
node 128mpi ⨉ 1omp reference configuration: 7.5s.  

 



 

 
Figure 5: Parallel efficiency scaling of overall application walltime for 2CzPN_10mols benchmark with 
linear scaling (LS) algorithm. Walltime for 1 node 128mpi ⨉ 1omp reference configuration: 1560s. 

 

 
Figure 6: Parallel efficiency scaling of initialisation (INIT) walltime for 2CzPN_10mols benchmark  for 
linear scaling (LS) algorithm, representative of performance for fragment calculations. Walltime for 1 
node 128mpi ⨉ 1omp reference configuration: 88.3s. 

 



 

 
Figure 7: Parallel efficiency scaling of overall application walltime for 2CzPN_20mols benchmark with 
linear scaling (LS) algorithm. Walltime for 1 node 128mpi ⨉ 1omp reference configuration: 3810s.  

 

 
Figure 8: Parallel efficiency scaling of initialisation (INIT) walltime for 2CzPN_20mols benchmark  for 
linear scaling (LS) algorithm, representative of performance for fragment calculations. Walltime for 1 

node 128mpi ⨉ 1omp reference configuration: 239s.  
 
Globally speaking increasing system size - e.g. from 2CzPN_1mols (54 atoms) to 
2CzPN_10mols (540 atoms) to 2CzPN_20mols (1080 atoms) - extends the scale at which 
reasonable parallel efficiency can be maintained or, equivalently, shows greater parallel 
efficiency at any given corecount, not surprising as the total amount of computational work 
per rank and thread grows relative to parallelisation overheads.  



 

 
It is clear that pure MPI execution - 128 ranks per node ⨉ 1 thread per rank - is almost never 
the most performant use of a given number of nodes (cores) and that using multiple threads 
per rank is essential for obtaining best performance on any given number of nodes. 
Additionally, in attempting to retain parallel efficiency when scaling out to run on more 
nodes the optimal number of threads per rank increases for larger node counts. In other 
words, a strategy of deciding on an optimally performing hybrid execution configuration 
based on single-node experiments will not yield optimal performance at larger scale.  
 
The parallel scaling behaviour of fragment calculations, which are approximated in our 
analysis by focusing purely on the initialisation (INIT) time of the same linear scaling 
benchmark runs, follows a roughly similar trend.  
 
Sampling-based profiling was performed using CrayPAT to gain insight into why this is, i.e. 
into how the net observed performance trends result from the interplay of MPI and 
OpenMP parallelisation, and whether - and if so, how - the use of OpenMP in BigDFT could 
be improved to further support efficient parallel scaling. It should be noted that due to 
memory constraints faced when profiling it was only possible to profile runs with 1 or 2 
threads per rank. Nonetheless this yielded the following key insights into global scaling 
behaviour:  
 

● In single-node runs the percentage of time spent in MPI calls is significant (20%-45%) 
but still generally less than time spent within BigDFT itself (“USER” time in profiling 
terms), and smaller when fewer ranks and more threads per rank are used. 
MPI_ALLREDUCE is by far the most prominent MPI call, with MPI_BARRIER also 
significant and MPI_WAIT and MPI_WIN_CREATE also appearing but less significantly. 

● As the number of nodes and ranks increases, the percentage of time spent in MPI 
routines grows substantially and becomes the dominant contributor to execution 
time, i.e. exceeding the time spent in BigDFT proper. At larger scales, MPI_GET and 
MPI_WIN_FENCE often become the dominant MPI operations, sometimes exhibiting 
high imbalance. MPI_ALLREDUCE also remains significant. 
 

In other words, globally speaking overall performance is primarily limited by MPI 
communication, particularly one-sided operations and collectives, as the scale (number of 
nodes and ranks) increases. Load imbalance across ranks and nodes also contributes 
significantly to the bottlenecks at larger scales. The reason why multithreading is able to 
alleviate this bottleneck somewhat at a given node count is because it can reduce the total 
number of ranks and associated communication overheads without introducing equal or 
greater combined overheads and inefficiencies through OpenMP-parallelisation.  
Suggestions to run with reordered rank placement as suggested by CrayPAT for a number of 
runs might help improve work balance across ranks. Optimizing the use of MPI collective and 
one-sided communications should help (as might replacing one-sided communications 
altogether). 
 
We investigated whether the existing OpenMP implementation in BigDFT could be improved 
and indeed whether OpenMP might be added where not yet present in order to better 
alleviate the MPI bottleneck. Of the time spent in BigDFT itself the subroutine 



 

sparsemm_new (defined in the sparsematrix module, part of the CheSS library) was clearly 
dominant across benchmarks and node counts, followed by sumrho_for_TMBs (defined in 
the rhopotential module). The subroutine sequential_acces_matrix_fast2 (also in the 
sparsematrix module) also appeared, but less significantly. These subroutines are all already 
parallelised using OpenMP. Of these, sparsemm_new and sequential_acces_matrix_fast2 
sometimes show significant imbalance between ranks. However imbalance percentages 
between threads in an OpenMP team within a rank for the main OpenMP-parallelised 
subroutines are often low. Hence this likely reflects imbalance across MPI ranks, possibly as 
a result of unequal work distribution, rather than poor OpenMP parallelization within a rank. 
Functions related to OpenMP runtime overheads like gomp_team_barrier_wait_end or 
GOMP_parallel appear occasionally, indicating some overhead, though usually small.  
 
Further work could be done to verify the distribution of work for OpenMP parallel regions 
across ranks and the degree of imbalance between threads within a rank, especially for 
larger numbers of threads per rank as this could not be done using CrayPAT as a result of 
previously mentioned memory constraints. If intrateam thread imbalance were to be found 
to grow significantly for higher threadcounts it would be worth investigating scheduling as 
starting point.   
 
 

Cubic scaling 

 
Figure 9: Parallel efficiency scaling of overall application walltime for 2CzPN_1mols benchmark with 
cubic scaling algorithm. Walltime for 1 node 128mpi ⨉ 1omp reference configuration: 63s. 

 



 

 
Figure 10: Parallel efficiency scaling of overall application walltime for 2CzPN_10mols benchmark 
with cubic scaling algorithm. Walltime for 1 node 128mpi ⨉ 1omp reference configuration: 933.5s.  

 

 
Figure 11: Parallel efficiency scaling of overall application walltime for Ga2O3_113_1051 benchmark 
(periodic boundary conditions) with cubic scaling algorithm. Walltime for 1 node 128mpi ⨉ 1omp 
reference configuration: 80s.  

 



 

Scaling trends for the cubic scaling algorithm were found to be globally similar to those for 
the linear scaling algorithm, including for the Ga2O3_113_1051 benchmark (160 atoms), 
which uses periodic boundary conditions, but with benchmarks typically benefiting from a 
larger number of threads per rank for optimal performance compared to the linear scaling 
algorithm. For a relatively small system such as the 2CzPN_1mols benchmark (54 atoms) this 
effect is dramatic, with an optimal thread count of 8 or 16 threads per rank giving between 
3⨉ and 8⨉ times faster performance than pure MPI execution on the same number of cores.  
 
Profiling showed that as for the linear scaling algorithm total time spent in MPI is significant 
and grows to equal or exceed time spent in BigDFT code as the total number of ranks 
increases to and beyond the limit of good parallel efficiency, albeit somewhat less drastically 
than for the linear scaling algorithm. Again MPI_ALLREDUCE is consistently a top time 
consumer, showing increasing cost and imbalance as the total number of ranks increases. 
Other calls like MPI_GET, MPI_WIN_FENCE, and MPI_WAIT also become significant at the 
largest scale, exhibiting high imbalance. As for linear scaling, addressing these imbalances, 
e.g. by using custom rank ordering as suggested by CrayPAT for some multi-node runs, might 
help improve scalability. Optimizing the use of MPI collective and one-sided communications 
should help (as might replacing one-sided communications altogether).  
 
With regards to BigDFT itself, for 2CzPN_* benchmarks the subroutines convolkinetic and 
convolkinetict dominated consistently, and comb_rot_grow_* and comb_rot_shrink_* (for 
lower rank counts) subroutine variants also appeared as secondary top contributors. For the 
Ga2O3_113_1051 benchmark with periodic boundary conditions the dominant subroutine is 
convolut_kinetic_per_sdc, with syn_rot_per, convrot_n_per, acc_from_tensprod, and 
apply_w appearing as secondary top contributors. These subroutines, many of which are 
part of BigDFT suite’s Orbital Manipulations library, are all already OpenMP parallel. For all 
of these, the general observed trend is that imbalance across ranks grows with increasing 
rank count, but with usually relatively low imbalance between threads in a team on a given 
rank. As for linear scaling this likely reflects imbalance across MPI ranks as a result of 
unequal work distribution rather than poor OpenMP parallelization within a rank. Further 
work could be done to verify the distribution of work for OpenMP parallel regions across 
ranks and the degree of imbalance between threads within a rank for larger numbers of 
threads per rank. If intrateam thread imbalance were to be found to grow significantly for 
higher thread counts it would be worth investigating scheduling as a starting point.  
 
One difference compared to profiling results for the linear scaling algorithm is that there are 
not insignificant contributions from calls to BLAS (between 1% and 7% of total time), namely  
mkl_blas_def_dgemm_kernel_zen, mkl_blas_def_xdgemv, mkl_blas_avx512_strmm_sm, 
and from the LAPACK subroutine DAXPY (2% - 5%).  
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