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Abstract—A new module entitled CS_DUGKS was developed
within the framework of Code_Saturne, an open-source CFD
software, to solve the Boltzmann-BGK equation using a discrete
velocity approach. CS_DUGKS utilizes the discrete unified gas
kinetic scheme to reconstruct the flux of the finite volume
discretization of the Boltzmann-BGK equation. Three collisional
models were implemented into CS_DUGKS. CS_DUGKS was
calibrated against two-dimensional cavity flows and rarefied
Couette flows. Scaling tests conducted on ARCHER2 indicate that
the developed module retains the excellent parallel performance
of Code_Saturne.

I. INTRODUCTION

Many industrial transport processes may exceed the limits
of continuum theory. For instance, clean energy pathway
technologies, such as fuel cells [9, 8] and CO2 storage
in shales [5], involve gas flows at the micro/nano level.
Some clean energy pathway technologies even extend into the
quantum realm, such as solar energy (radiative heat trans-
fer) and neutron transfer in nuclear power plants [11]. To
accurately address these challenges, the Boltzmann equation
and/or similar transport equations need to be solved. However,
directly solving the Boltzmann equation is computationally
intensive and memory demanding [12, 6]. This is because
the numerical solution requires discretizing the physical space
along with an additional space, the molecular velocity space.
After discretizing the molecular velocity space, the Boltzmann
equation transforms into a set of scalar transport equations,
solvable only in the physical space. The number of equations
increases with the Knudsen number, defined as the ratio
of the molecular mean free path to a representative length
scale. Therefore, it is not uncommon to have over 1,000 such
transport equations for gas flows at the micro/nano level or at
high altitudes.

The significant advancement in computational power
brought by Petascale and, more recently, by Exascale systems
has enabled the simulation of large mesoscale applications that
was practically impossible a few years ago. In this context,
Code_Saturne [1], an open-source computational fluid dy-
namics software optimized for high-performance systems [3],
serves as an excellent platform for implementing Boltzmann-
type equations.

The scope of this project is the development of an open-
source finite-volume solver entitled CS_DUGKS within the
computational framework of Code_Saturne, which solves the
Boltzmann-BGK equation. The developed module utilizes

the discrete unified gas kinetic scheme, DUGKS [7], which
solves the Boltzmann-BGK equation through a finite volume
discretization of the physical space and a finite difference
discretization of the molecular space. Its unique flux recon-
struction algorithm enables the mesh sizes and timesteps to
be significantly larger than the kinetic scale, facilitating the
multiscale modeling of various flow regimes.

II. THE DISCRETE UNIFIED GAS KINETIC SCHEME

In DUGKS, the Boltzmann-BGK equation is first discretized
in the velocity space using a velocity set ξi, i = 1, 2, . . . , N ,
leading to a system of N partial differential equations. Then,
the resulting equations are discretized in the physical space
via a second-order finite-volume cell-centered scheme:
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i represent the distribution function and
the collision operator computed at the center of cell c for the
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is computed at the center of interior and boundary faces. The
terms nf

i and ∆Sf denote the outward unit vector at face
i and the area of face, f , respectively. For interior faces,
the distribution function, ff,n+1/2

i is calculated by integrating
along the characteristic line that ends at the face center for a
timestep ∆h = 0.5∆t:
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By introducing the new populations, f̄ = f − 0.5∆hΩ and
f̄+ = f + 0.5∆hΩ, the above equation can be written in an
explicit form:

f̄n+1/2,f = f̄+n(xf − ξi∆h). (4)

The distribution function f̄+ at xf − ξi∆h is to be re-
constructed via a first-order Taylor expansion. The required
gradient, ∇f̄+ is computed with the build-in gradient schemes
of Code_Saturne based on the estimates of f̄+n

i at cell
centers. Finally, by introducing the algebraic transformations,
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f̃i = fi − 0.5∆tΩi and f̃+
i = fi + 0.5∆tΩi, Eq. (1) can be

written in an explicit form:
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The timestep is determined by the Courant-Friedrichs-Lewy
(CFL) condition

∆t = α
∆x

U + ||xi||min

(6)

where 0 < α < 1 is the CFL number and ∆x is the
distance between the centers of two adjacent cells that share
an interface.

The macroscopic variables can be computed directly from
f̃ :

ρ =
∑
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wif̃i, ρua =
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2

∑
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where ρ, ua, e, the gas density, velocity and internal energy
at point xc, respectively. The term, wi, denotes the weight of
the chosen quadrature scheme. Please note the stress tensor,
σij and heat flux, qa are not given directly in terms of f̃ but
are expressed as a combination of the new distribution f̃ and
the employed equilibrium function [13].

The numerical scheme for solving the Boltzmann-BGK
equation based on DUGKS has as follows:

• Compute f̃+n
i at cell centers.

• Compute f̄+ at cell centers
• Compute the gradient of f̄+

• For interior faces reconstruct f̄+s at xf − ∆hξi and
update f̃i due to contributions to Eq. (1)

• For boundary faces compute F̄ f for emerging populations
and update f̃ due to contributions to Eq. (1)

• Compute macroscopic variables at cell centers based on
the new estimates of f̃i

• Update fluid properties

III. IMPLEMENTATION INTO CODE_SATURNE

The discrete unified gas kinetic scheme is implemented in
Code_Saturne as a standalone package, CS_DUGKS. Specif-
ically, new high-level structures were developed to meet the
needs of the developed package. At the same time, the built-in
functionalities of Code_Saturne are used for data storage, MPI
communications, data output, write/restart, etc.

A. Structure of the solver

The primary structure of CS_DUGKS is the
cs_dugks_system_t structure, which contains all
the cs_fields_t structures, pointers to high-level
functions, and a cs_dugks_param_t structure. The latter
encompasses all the necessary functionality for simulation
management within CS_DUGKS. Field data are divided into
mesoscopic fields, which consist of the distribution function
at each discrete velocity field, and macroscopic fields,
categorized into two groups: (i) fields computed directly from
mesoscopic fields, i.e., ρ, ui, σij , etc., and (ii) fields computed
from the previous group. High-level functions within

cs_dugks_system_t include explicit and implicit solvers,
cs_dugks_compute_t * (the latter is a work in progress),
functions for initializing the distribution fields from the initial
macroscopic variables, cs_dugks_init_distrib_t *,
and functions for computing the macroscopic variables,
cs_dugks_compute_macros_t *, the stress tensor,
cs_dugks_compute_stresses_t, and the heat flux,
cs_dugks_compute_heat_flux_t. The last three sets
of functions depend on the employed molecular velocity
quadrature scheme and the selected collision model. The
following paragraph provides more details.

The cs_dugks_param_t structure contains all
the essential information needed to set up and run
simulations with CS_DUGKS. Specifically, it includes
structures for discretizing the molecular velocity space,
cs_dugks_mol_velocity_params_t, property
structures, cs_property_t, to calculate the relaxation
time and the sound speed, and cs_xdef_t structures for
initializing macroscopic fields in various volume zones, as
well as cs_xdef_t structures for defining boundaries.
Initially, the cs_xdef_t structure was compatible only
with the CDO module [2], but within this project, efforts
have been made to adapt the cs_xdef_t structure for finite
volume discretization schemes, including both the current
package and the legacy part of Code_Saturne. Utilizing the
cs_xdef_t structure enables a systematic process within
Code_Saturne for defining simple or complex expressions for
the initial and boundary conditions or gas properties.

CS_DUGKS currently provides three distinct quadrature
schemes for discretizing the molecular velocity space. These
quadrature schemes include the Gauss-Hermite, Gauss, and
Newton-Cotes methods, with the last two applying only
to rarefied flows. CS_DUGKS also stores the points at
which the distribution function is computed, denoted as ξi,
within the cs_dugks_mol_velocity_params_t struc-
ture, along with the quadrature weights if necessary. Fur-
thermore, CS_DUGKS provides three collision models: i) the
BGK, ii) the Shankov, and iii) the ellipsoidal model, accessed
through cs_dugks_equilibrium_distrib_t * type
functions that are compatible with the time marching scheme
and the selected quadrature scheme.

B. Implementation of boundary conditions

The portion of the distribution function that transitions into
the physical domain from actual and virtual boundaries must
align with the macroscopic conditions specified at the bound-
ary. CS_DUGKS currently provides boundary conditions for
inlets, outlets, planes of symmetry, and both stationary and
moving walls. At the mesoscopic level, the emerging part of
the particle populations is calculated using specular reflection,
diffuse reflection, or the bounce-back scheme for continuum
flows.

Enforcing boundary conditions at the mesoscopic level in
complex boundary surfaces requires to identify the emerging
and impinging populations at different boundary faces. These
particle populations are determined using the inner product,
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(ξi − ui)ni, where ui denotes the macroscopic boundary
velocity and ni is the outward unit vector normal to the
boundary face. The identification of a particle population at
a given boundary face as an emerging or impinging one
is stored in cs_dugks_bc_vel_map_t structures. The
above strategy significantly simplifies the implementation of
mesoscopic boundary conditions for complex geometries.

For the specular reflection boundary condition, additional
information are needed to reconstruct the emerging population
from the impinging populations. For complex boundaries, the
reflected populations cannot be constructed directly from a
unique incident population, and a reconstruction process based
on a finite element interpolation procedure must be used. The
required information for reconstructing the reflected popula-
tions is stored in the structure cs_dugks_bc_support_t.

DUGKS calculates the distribution function, f̃ , which is
obtained from the distribution function, f , via an algebraic
transformation. For the diffusive scattering and bounce-back
methods, this algebraic transformation does not pose any
difficulty in calculating the emerging populations, f̃ . However,
when applying the diffusive boundary condition to a transient
problem, determining the emerging populations of the dis-
tribution function, f̃ , in terms of the impinging populations
becomes a non-linear challenge. The non-linearity arises from
the necessity to compute the macroscopic variables (ρ,u, T )
at a boundary face, which are essential for reconstructing the
emerging portion of the distribution function, f̃ . To tackle
the above non-linearity, an iterative scheme is employed, that
adjusts the emerging part of the distribution function based on
the current estimates of the macroscopic variables calculated
at the boundary faces. The maximum number of iterations
and the convergence rate of this iterative process are stored in
cs_dugks_bc_les_t.

C. Domain decomposition and MPI parallel communications

CS_DUGKS, similar to Code_Saturne, employs a physical
space decomposition approach for data decomposition. The
message-passing interface (MPI) protocol is used for intra-
process communications. In the physical domain decomposi-
tion approach, each process owns a part of the computational
domain while accounting for the complete set of molecular
velocities. CS_DUGKS utilizes the built-in functionalities
of Code_Saturne for domain partitioning and intra-solver
data exchange. The user can select from all the available
tools of Code_Saturne for domain decomposition, such as
ParMETIS/METIS, Scotch/PT-Scotch, Morton-based space-
filling curves, and Hilbert-type curves [3]. Intra-solver com-
munications are managed using halo cells, which create copies
of cells adjacent to the sub-domain boundaries. The built-
in asynchronous MPI functionality of Code_Saturne handles
communications between adjacent processes.

IV. BENCHMARK TESTS

To validate the developed module, two benchmark cases are
considered. First, CS_DUGKS, the "spatial" implementation
of the module, is validated by comparing it against benchmark
cases of cavity flows. In the second step, the discretization of

the molecular velocity space is validated by analyzing Couette
flows at different Knudsen (Kn) numbers.

A. Continuum flows

For the validation of the temporal implementation of
CS_DUGKS, a two-dimensional square cavity is considered,
with the top wall moving in the x-direction at a velocity of
uw = 0.1cs, where cs is the sound speed, while the remaining
walls remain stationary. The kinematic viscosity, ν, is set to
0.0001csH . Therefore, the Reynolds number, Re = uH/ν, is
equal to 1000, where H is the height of the cavity.

Structured and unstructured meshes are utilized for validat-
ing the temporal implementation of CS_DUGKS. The D3Q19
lattice was employed to discretize the molecular velocity
space. The bounce-back scheme is implemented to enforce
the no-slip boundary condition on both moving and stationary
walls. Steady-state conditions are achieved when the norm
||un+1 − un|| becomes smaller than 10−8||un||, where un

represents the velocity at the nth increment and || · || denotes
the L2 norm.

Structured meshes of 40×40, 80×80 and 128×128 elements
were used to validate the developed module. The velocity
profiles, u = (u, v), along vertical and horizontal lines passing
through the center of the cavity are given in Fig. 1. For
comparison purposes, the benchmark data from [4] and the
velocity profiles obtained from the incompressible Navier-
Stokes solver of Code_Saturne are included in the figure. An
excellent agreement is observed between the CS_DUGKS and
the benchmark velocity profiles for meshes with at least 80
elements in each direction.

The developed module can also utilize unstructured meshes
to perform mesh refinements near boundaries. To validate the
use of unstructured meshes with CS_DUGKS, the same case
as before is tackled. Unstructured meshes with 4000, 10000,
and 20000 triangles are employed. The velocity profiles along
vertical and horizontal lines passing through the center of
the cavity, along with the benchmark results from [4], are
presented in Fig. (2). The excellent agreement between the
velocity profiles obtained by CS_DUGKS and the benchmark
cases highlights the capabilities of the developed module to
simulate arbitrary geometries at a mesoscopic level.

B. Couette flows

Herein, the microplanar Couette flow between two horizon-
tal plates separated by a distance H is examined. The top and
bottom plates move at a constant velocity of ±0.1cs, where
cs represents the reference sound speed.

A uniform mesh of 100 elements in the z-direction is used to
discretize the physical space. Periodic boundary conditions are
implemented to simulate a semi-infinite domain. The diffuse-
scattering boundary condition is used to impose the boundary
conditions at different KD numbers, where KD reads:

KD =

√
π

2

ν0
csH

(8)

ν0 is the reference kinematic viscosity. The Shankov model
with a Prandtl number of 2/3 is utilized to simulate collisions
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Fig. 1. (a) Horizontal and (b) vertical velocity profiles across the cavity center at Re = 1000 for uniform meshes of different sizes.
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Fig. 2. (a) Horizontal and (b) vertical velocity profiles across the cavity center at Re = 1000 for unstructured meshes of different sizes.

in a hard-sphere gas. An 11th-order Gauss-Hermite quadrature
is employed to discretize the molecular velocity space.

The horizontal velocities for Couette flow at different KD

numbers are presented in Fig. 3. For comparison, the DSMC
results from [10] are also included in the figure. There is good
agreement between the DUGKS and the DSMC results for all
considered KD numbers, with the non-linearity near the walls
being successfully captured.

V. PARALLEL PERFORMANCE

To assess the parallel performance of CS_DUGKS as a
standalone package, gas flows at various Knudsen numbers
are examined in a three-dimensional cavity with dimensions
of (10m, 10m, 5m). In this setup, the top wall moves with a
horizontal velocity of uo = 0.01m/s, while the other walls
remain stationary. Intermolecular collisions are modeled using

the BGK model. Several relaxation times are used to simulate
different flow conditions. In all instances, the diffuse reflection
boundary condition is employed to model the particle-wall
interactions.

Structured meshes of 55 and 256 million cells are used to
mesh the three-dimensional cavity. Both meshes are generated
using Code_Saturne’s mesh multiplication capabilities from
initial structured meshes of 0.108 and 0.5 million elements,
respectively. Additionally, unstructured meshes of 88 million
and 704 million tetrahedral elements are also considered.
These meshes are produced from an initial mesh of 11 million
tetrahedral elements using Code_Saturne’s built-in mesh multi-
plication functionalities. To test the parallel performance of the
developed module for flows with different Knudsen numbers,
three sets of molecular velocities with 27, 125, and 1000 points
are considered.
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Fig. 4. Speed up reported for four different meshes of tetrahedral and hexahedral elements for sets of (a) 27, (b) 125 and (c) 1000 molecular velocity points

The benchmark simulations are conducted on the UK na-
tional supercomputing service ARCHER2, which is an HPE
Cray supercomputing system featuring dual AMD EPYCTM

7742 type 64-core processors. The parallel performance of
the developed module is analyzed based on the speed-up
ratio, which is defined as the ratio of the time required by
the minimum number of fully populated nodes, nmin (or
128×nmin processes), to run for 50 time steps, to the runtime
taken by n nodes, 128×n processes, for the same number of
steps. The minimum number of nodes for each individual mesh
was identified based on memory considerations.

The speed-up of CS_DUGKS across various mesh com-
binations and molecular velocities is illustrated in Fig. 4.
This figure demonstrates that the developed module maintains
the exceptional performance of Code_Saturne, regardless of
the number of cells and molecular velocities used in the
simulations. Notably, higher speed-up ratios are observed with
an increase in the number of points used to discretize the
distribution function. For example, in cases of 55 million cells
with 27 discrete points per cell and 55 million cells with 1000
discrete points per cell, the speed-up ratios for 128 nodes
were 8.85 and 13, respectively. The improved performance
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associated with a greater number of discrete points in the
discretization of the distribution function, f , is attributed to
the substantial amount of data exchanged during the asyn-
chronous MPI communications in Code_Saturne. Increasing
the number of processes reduces the buffer size, which, owing
to the multitude of bites/halo points, fits within the optimal
buffer size range, resulting in significant communication cost
reductions and enhanced parallel performance.

VI. CONCLUSIONS

An open-source finite volume solver for the Boltzmann-
BGK equation is developed within Code_Saturne. This module
has been validated against numerical benchmark cases for both
continuum and rarefied flows, with the results showing good
agreement with those benchmarks. It inherits all the parallel
functionalities of Code_Saturne, making it an excellent plat-
form for large-scale modeling of industrial applications. Ad-
ditionally, this module retains all the pre- and post-processing
capabilities of Code_Saturne.
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