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Abstract 
An interface was written to combine the functionality of an adaptive kinetic Monte Carlo 
program (ACDC) and an ab initio electronic structure program (ONETEP). The merger of the 
two programs was motivated by the limitations in empirical potentials and allowed for the 
exploration of the potential energy surface of adatoms on the MgO(001) and Al(001). We 
examined two schemes for optimising the utilisation of the ARCHER2 platform. Due to the 
nature of the transition state searches (differing number of force evaluations), task farming 
was observed to be the most efficient. In addition, this approach is more fault tolerant and 
more extensible in the longer term. 
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1. Introduction 
 
Many critical technological processes and materials rely on solid-state diffusion such as the 
growth of thin films (magnetic recording media, electronic semiconductor devices, LEDs, 
optical coatings), batteries, nuclear materials, catalysis, and solid oxide fuel cells. Therefore, 
there is a need to understand processes for the informed design of new devices: timescales 
of milliseconds are often required for industrial applications. Unfortunately, solid state 
diffusion is very slow and challenging to study with “standard” methods (e.g. molecular 
dynamics, MD). Especially at low temperatures, MD-based sampling becomes inefficient as 
there is insufficient thermal energy to overcome the activation energy and the configuration 
will remain in or close to the initial state. 
 
Kinetic Monte Carlo (KMC) attempts to overcome this limitation by exploiting the fact that 
the long-time dynamics of this kind of system typically consists of diffusive jumps from state 
to state. Rather than following the trajectory through every vibrational period, these state-
to-state transitions are treated directly. The result is that KMC can reach vastly longer time 
scales, typically seconds. The most common atomistic KMC models employ an on-lattice 
approximation which limits their ability to describe a system in which defects are not exactly 



on the pre-defined lattice (e.g. interstitials) or systems which undergo significant 
deformation (e.g. materials that have been subjected to radiation damage). These atomistic 
KMC models also require a list of possible event mechanisms and rates (a rate catalogue) 
that have been determined a priori, through experimental and theoretical methods, or even 
by guessing. This is naturally a severe limitation to such a method, as atomic motion is not 
necessarily intuitive and can be extremely difficult to predict in advance. Furthermore, as 
the simulation advances, the structure of the system will change, altering the kinetics of the 
mechanisms.   Henkelman and Jónsson [1] have proposed a variation on the KMC method, in 
which one builds the rate catalogue on the fly for each state (called adaptive KMC). This 
method, which is an off-lattice approach analogous to MD, has the key requirement of 
having an efficient way to search for saddle points that are connected to the current state of 
the system.  Adaptive kinetic Monte Carlo (aKMC), as implemented in ACDC, determines the 
transition states and activation energies using a minimum mode following search (e.g. dimer 
method or activation relaxation technique) [2] so that neither the mechanism nor the end 
point of a process is known prior to the search.  
 
Prior to this project, ACDC was only capable of calculating the energy and forces using the 
rigid ion model [3]. This is very fast but, as rigid ion models are often obtained from fitting to 
experimental properties at equilibrium conditions, of questionable accuracy  transition 
states. Moreover, potential functions are not available for many systems (e.g. interfaces 
between metals and oxides). The primary objective of the work was to interface ACDC with 
the linear-scaling Density Functional Theory code ONETEP [4] and therefore to increase the 
accuracy of the calculated potential energy surface and broaden the scope of the aKMC. 
 	
 
2. Methodology 
 
To meet the primary objective described above, an interface was created so that the C++ of 
ACDC (written in C++) could talk to  ONETEP (written in FORTRAN). The API was written to 
be as general as possible and easily extendable to other codes (e.g. DFTB+, CASTEP, BigDFT) 
and employs the iso-C/FORTRAN bindings. ONETEP had to be modified to receive data (e.g. 
execution commands, atomic positions) and return the energies and forces evaluated using 
DFT. Thus, the principal alteration to ONETEP was to turn the initialisation functions into a 
FORTRAN module that could manage the ab initio calculations depending on the 
instructions passed. In addition, a suitable MPI communicator was created in ACDC and 
passed to ONETEP and the memory management of FORTRAN allocatable arrays was 
adapted so that the ONETEP module could be repeatedly called from ACDC. 
 
The probability of finding the lowest saddle point and the saddle point distribution is 
unknown and the potential energy surface can be very complex. In addition, to accurately 
model the diffusion processes and precisely determine the KMC clock time, it is necessary to 
sample a large number of possible saddle points. This may range from a few tens of saddle 
points to several thousands depending on the nature and size of the system. In addition, it 
has been estimated [2] that up to 50% of the searches fail by the negative eigenvalue 
turning positive or falling back into the initial energy basin. Fortunately, each search is 
independent of the others, and multiple transition point searches using ONETEP to 
determine the energy and forces can be launched simultaneously to occupy thousands, if 



not, hundreds of thousands of cores. The coordination of numerous searches is not trivial 
due to the high rate of failure in searches and one does not know the appropriate number 
of workgroups at the start. Moreover, it is difficult to determine whether a search is 
adequately sampled (self-consistent schemes have been developed for this purpose [5]). In 
this project we evaluated two schemes 

1. The first scheme employed a single program that instantiated a given number of 
“ONETEP objects” that received an appropriate MPI communicator from the main 
program. This approach was found to be most suitable for fast force fields searches 
which are relatively quick (approximately 60 seconds for 2000 atoms using 16 
threads) and employ fewer nodes than ONETEP based searches. However, this 
method proved to be inefficient using electronic structure methods owing to the 
very different runtime of each transition state search. Also, the method was less 
fault tolerant. 

2. A second approach employed a scheduler (Fig. 1) to task farm multiple searches. This 
method improved the load-balance for the ONETEP searches by (re-)scheduling 
resources and minimizing idles nodes until sufficient valid searches have been 
completed. Moreover, the method is more fault tolerant as a failure on a single node 
does not jeopardise the whole simulation, which can be restarted  from a checkpoint 
file. Also, it is likely to be more flexible for future developments (e.g. potentials 
obtained from machine learning). 

 

 
 
 
Example calculations 
 
Using the above interface, we have examined the diffusion of atoms on the Al (001) and MgO (001) 
surfaces with simulation cells containing 110 and 268 atoms and exploiting between 5,120 and 10,240 
cores, respectively. The number of cores used reflects the available resources and can easily be 
extended to a greater number of cores. The calculated activation energies from ACDC-ONETEP are in 
good agreement with those determined from nudged elastic band calculations using VASP [6]. 
 

Figure 1. Schematic diagram 
demonstrating ACDC-ONETEP 
calculations on TST searches and 
coordination of the n parallel 
searches across a number of MPI-
OpenMP tasks. 



 
 
Figure 2. Calculated activation energies for the diffusion of a single oxygen and magnesium ion on the (001) 
surface of MgO, shown on the right. The surface oxygen and magnesium ions are shown as blue and dark green 
spheres respectively. The trajectory of the diffusing ions is marked by the blue arrows and the final positions of 
the ions are displayed in yellow (oxygen) and brown (magnesium). 
 

 
 
Figure 3. The initial configuration of several Al ad-atoms (blue) on the Al (001) surface. The 
saddle points are shown for the new configurations 1, 2 and 3. The blue arrows indicate the 
direction of the displacement. As self-evident, different initial states entail differently 
correlated ionic displacements, which are effectively impossible to anticipate without running 
the simulation and are strongly dependent on the accuracy of the method used to compute 
energies and atomic forces. 
 
In summary, we have demonstrated that it is feasible to interface ACDC to ONETEP and 
calculate the activation energy of diffusing ions in solid state materials. Despite requiring large 
resources, it is possible to undertake adaptive Kinetic Monte Carlo simulations with a higher 
degree of accuracy than previously possible based on empirical interatomic potentials. The 
method is suitable for scaling to a very large number of cores and will benefit from the drive 
to exa-scale computing as well as advances in DFT-derived machine-learned interatomic 
potentials. 
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