
eCSE05-3 Technical Report

Sam Owens, Paul Bartholomew & Maarten van Reeuwijk

August 15, 2023

Abstract

This report presents the work conducted for the ARCHER2 eCSE05-3 project.
The goal was to improve the scalability and object-resolving capability of the
uDALES framework (Suter et al., 2022). There are three specific changes in-
volved, which together constitute an upgrade of the codebase from version 1.0
to 2.0. Firstly, uDALES v1.0 has a one-dimensional domain decomposition,
which means it is not able to effectively utilise the large number of processors
available on ARCHER2. To address this, a two-dimensional domain decomposi-
tion was implemented in uDALES v2.0 using the library 2DECOMP&FFT (Li
and Laizet, 2010), and the model is shown to scale well for realistic use cases.
Secondly, the pressure solver in uDALES v1.0 is not capable of using the Fast
Fourier Transform (FFT) algorithm with inflow-outflow boundary conditions,
instead relying on slower algorithms. This was made possible in uDALES v2.0,
and the implementation has been validated using canonical urban cases. Finally,
the immersed boundary method used in uDALES v1.0 only permits obstacles
that align with the Cartesian computational grid, thus hindering its ability to
model realistic urban geometries. uDALES v2.0 instead describes the geometry
using an unstructured triangulated surface, which required a fundamental refor-
mulation of the immersed boundary method and the pre-processing associated
with the geometry. The implementation has been validated in both aligned and
non-aligned cases.

1 Introduction

The urban atmospheric large-eddy simulation framework uDALES v1.0 (Suter
et al., 2022) has several key limitations. It has a one-dimensional domain de-
composition, which is implemented using bespoke routines relying on MPI. This
means the maximum number of processors that it is possible to use is limited
to the number of grid points in one dimension. To illustrate, a typical uDALES
v1.0 simulation uses 128-1024 points in each direction, thus only potentially
leveraging 1-8 nodes on ARCHER2.

The pressure solver in uDALES is based on the Fast Fourier Transform
(FFT) algorithm. For periodic lateral boundary conditions, the FFT is used

1



to solve the streamwise (x) and spanwise (y) directions, with the vertical (z)
direction solved using Gaussian elimination. In uDALES v1.0, for inflow-outflow
x boundaries, y is periodic and is solved using the FFT, while x and z are solved
using cyclic reduction. This approach is practically around 50% slower than the
periodic case.

The immersed boundary method (IBM) is used to resolve the flow past
obstacles, with wall functions parametrising subgrid processes close to surfaces,
yielding surface fluxes of momentum (shear stress) and sensible heat. The IBM
and wall functions are implemented with the assumption that the facets sit
exactly on computational cell edges, and so in pre-processing the geometry is
constructed under this constraint in a process referred to as voxelisation. This
conceptually simplifies the implementation but obviously introduces errors if
the original geometry does not actually align with the grid.

uDALES v2.0 has been developed to address these issues. It has a two-
dimensional domain decomposition, implemented using the 2DECOMP&FFT
library, which was chosen because it has been designed with ease-of-use and
scalability in mind. The implementation of this is discussed in section 2. The
pressure solver had to be completely rewritten in account of the domain de-
composition, and also because the library used for the FFTs (FFTW) is differ-
ent to uDALES v1.0 (FFTPACK). In addition, it was made capable of using
FFT-based methods for inflow-outflow boundary conditions in both x and y,
specifically the discrete cosine transform (DCT). This is discussed in section
3. Finally, the geometry is specified as an unstructured triangulated surface,
or triangulation, which is given independently of the grid using the STL file
format. The triangles are referred to as facets, and have properties that govern
their effect on the flow and their surface energy balance. The new IBM and wall
function approach is described in section 4.

2 2D domain decomposition

In a 2D domain decomposition, the domain is divided into a number of sub-
domains, or ‘pencils’, with each operated on by one processor (rank). Setting
up the basic data structures required for the 2D domain decomposition was
straightforward with the 2DECOMP&FFT library. The normal orientation of
the pencils is such that x and y are parallelised. Only in the pressure solver is
the data transposed, i.e. moved from one pencil orientation to another.

Several modifications to the codebase were made in order to better meet the
uDALES use case. uDALES employs halo cells, which means that arrays storing
field values on each pencil also stores some values on adjacent pencils. Therefore,
each array is slightly larger than solely the number of points in the pencil.
This is done because these halo cells are included in the stencil of the finite
difference scheme for cells at the edge of each pencil. This naturally requires
communication between adjacent ranks every timestep. 2DECOMP&FFT does
offer halo cell support, but the functionality is slightly limited. Specifically,
there is a single subroutine that takes as an argument an array the size of the

2



pencil, copies the content into a larger array the size of the pencil plus halos,
populates the halo cells by communicating with adjacent ranks, and returns the
larger array. Given arrays in uDALES are allocated with halos, it made sense
to extract the communication functionality to a standalone subroutine. Whilst
this was the most significant change, the array allocation wrapper subroutines
were also modified so as to include halo cells. This makes array allocation in
uDALES less manual. These changes have been verified in a number of tests,
and are currently contained in a fork of the 2DECOMP&FFT library, but will
be merged into the main branch in the near future.

Figures 1a and 1b shows the strong scaling for periodic simulations with
10243 and 20483 points respectively. There is no geometry, hence the IBM not
being used, so purely the lower-level routines are being tested. These figures
demonstrate that the code scale well up to a large number of processors on
ARCHER2.

The case setup shown in section 4 for a non-rotated geometry is used to
test the scaling with inflow-outflow boundary conditions, representative of flow
conditions typically found in uDALES simulations. For scaling purposes higher
resolutions are used, but temperature is not solved for, and the domain width
is smaller. The domain size is 190 × 114 × 114 m3, and the smaller case has a
grid size of 640× 384× 384, and larger case has a grid size of 1280× 768× 768.
The speed-up for each case is shown in figures 2a and 2b, respectively. For the
smaller case a good parallel efficiency (above 80%) is observed until 32 nodes
(4,096 MPI ranks) which corresponds to ≈ 23 k grid points per core. A similar
reduction of parallel efficiency below 25 k grid points per core was observed
when running the validation case described in section 4, suggesting this is a
practical lower limit of work for uDALES. The larger case required 4 nodes
minimum and demonstrated good scaling up to 128 ARCHER2 nodes (16,384
CPUs).

3



(a) (b)

Figure 1: Strong scaling for case without IBM and periodic boundary conditions;
(a) 10243 points, (b) 20483 points.

(a) (b)

Figure 2: Strong scaling for case with IBM and inflow-outflow boundary condi-
tions; (a) 640× 384× 384 points, (b) 1280× 768× 768 points.

4



3 FFT-based pressure solver

For incompressible flows such as those modelled by uDALES, the pressure sat-
isfies a Poisson equation. In uDALES v2.0, the Poisson equation is solved using
the FFT in the x and y directions and by default Gaussian elimination (GE) in
z. It is possible to use the FFT in z when the grid is equidistant, however there
is unlikely to be a performance gain using the FFT rather than GE. To solve
each direction requires transposing data between the three pencil orientations,
which is achieved using routines from the 2DECOMP&FFT library.

The velocity boundary conditions determine the specific type of transform
performed. If velocity is periodic in a given direction, then the pressure is
also periodic and the regular discrete Fourier transform (DFT) is used. If the
velocity is inflow-outflow, then the pressure has a Neumann boundary condition
and a discrete cosine (DCT) transform for a staggered grid is used. The details
of these transforms can be found in Schumann and Sweet (1988). uDALES
v1.0 used the FFTPACK implementation of the DFT, but the staggered DCT
transform is not included in this library. However, it is included in the FFTW
library, so this was used in uDALES v2.0.

As the name suggests, the 2DECOMP&FFT library contains extensive aux-
iliary FFT functionality, but this was not used for uDALES v2.0. This is because
the library is primarily designed for performing 3D DFTs, i.e. using the DFT
to solve the z direction as well as x and y. Since the z direction is never peri-
odic, this was not useful for uDALES. An option that was considered but not
adopted was to build a 2D DFT solver for periodic lateral boundaries using the
lower-level routines available in 2DECOMP&FFT. Due to the nature of Fourier
transforms, one must be very precise with array sizes and data types, particu-
larly when transforms are performed successively, and it proved difficult to do
this with the existing functionality in the library.

When using inflow-outflow boundary conditions and the DCT, the top bound-
ary condition must be treated with care. Specifically, fluid must be allowed to
pass through the top of the domain, which is equivalent to setting a non-zero
vertical velocity (w) there. The physical reasoning for this is that the incoming
flow responds to the geometry, which may result in net motion in the z direc-
tion. This non-zero w is determined by the plane-averaged pressure gradient
at the top, and without it, the flow is not incompressible at the top, which is
unacceptable both numerically and physically. In uDALES v1.0, w was always
set to zero, though the flow was incompressible due to the nature of the cyclic
reduction based pressure solver. This means that there was no numerical issue,
but the non-physical top boundary condition produced noticeable strange be-
haviour in flows with significant vertical motion. The novel top boundary has
been implemented successfully in uDALES v2.0; the proof of which is the fact
that the divergence of the velocity field is always zero, and no strange physical
behaviour has been noticed thus far.

5



4 Immersed boundary method

Conceptually, one expects the non-porous, stationary obstacles modelled in
uDALES to be no-slip, no-penetration, and to have zero flux across bound-
aries (apart from those parametrised by wall functions). This last aspect is
particularly important for scalars - the IBM needs to be conservative, meaning
there should be is no diffusion or advection of heat, moisture, and pollutant
concentration between fluid and solid regions. Using the triangulation describ-
ing the geometry, the domain can be divided into fluid and solid regions for a
given computational grid, and boundary points for both types are identified as
those with at least one neighbour of the other type. This is a necessary step in
pre-processing, and was implemented first in Matlab then in Fortran.

As far as this aspect to the IBM implemented in uDALES v2.0 is concerned,
the boundary across which scalars is conserved is the literal interface between
the fluid and solid cells, aligned with the cell edges. This means that when
the facets are also aligned with the cell edges, the desired boundary conditions
are satisfied exactly. If not, what is meant by no-slip, no-penetration, and
zero-flux must be reinterpreted slightly. This approach interprets no-slip and
no-penetration to simply mean the velocity at solid points is zero, and the zero
flux condition applies locally between each pair of fluid-solid neighbours.

An alternative approach would be to enforce that the value of a variable on
the boundary as determined by interpolating the values of nearby points satisfies
the boundary condition. For example, one method would be for solid cells that
have at least one fluid neighbour, set the value such that when interpolated
across the boundary in the normal direction to an ‘image point’ inside the fluid
region, the value or flux on the boundary itself satisfies the desired condition.
The obvious limitation with this is the fact that interpolation of any kind is just
an approximation. This approach is often used with laminar flows and when
using direct numerical simulation (DNS), because it is argued that since the flow
is fully-resolved, interpolation is valid. It is not as common with LES because
the flow is not fully resolved. Another inherent challenge with this approach is
that it is more complicated to ensure global conservation - the net flux between
fluid and solid regions due to the advection and turbulent diffusion terms should
be zero. In the current approach, global conservation is guaranteed since local
conservation is ensured by enforcing zero flux between each fluid-solid pair. In
the proposed approach, the zero flux condition is at the boundary itself in an
interpolated sense so local conservation no longer holds, but global conservation
would still be required. It was decided that this approach was too challenging,
and therefore, this aspect of the IBM is conceptually unchanged from uDALES
v1.0, though it was implemented from scratch in order to accommodate the 2D
domain decomposition and to simplify the code.

The novelty of uDALES v2.0 is in the treatment of the parametrised flux
at the boundary, namely the surface shear stress and sensible heat flux, as
determined by wall functions. Given a conservative IBM, these fluxes are the
only mechanism by which the surface exerts friction drag and exchanges heat
with the fluid. Another conservation principle that must be applied here is that

6



the total heat flux into the fluid is equal to the total heat flux out of the surface in
terms of the surface energy balance. This requirement motivates the approach,
and whilst this conservation principle is not relevant for momentum flux, the
method is also applied for that calculation. The surface is divided cell-wise for
each grid into sections, such that each section lies in only one cell, which may be
fluid or solid. Each section imparts a flux that is felt by a single fluid boundary
point. The form of the wall functions are unchanged from uDALES v1.0, and
follow Louis (1979) and the extension by Uno et al. (1995). They generally
depend on facet properties (e.g. roughness length), the distance between the
fluid boundary point and the wall, and the flow variables at the fluid boundary
point. In cases where the facet is not aligned with the grid, the flow variables
are reconstructed in a similar manner as described by Ma and Liu (2017). Once
the surface shear stress is determined, it must be transformed back to the grid
directions as it is a tensor quantity. When using the surface energy balance
model, the heat flux is also removed from the facet, and since each section is
accounted for exactly once and the sum of their area equals the total surface
area, conservation is guaranteed.

The IBM and wall function implementation has been verified in several cases.
For illustrative purposes, a validation case is presented that involves heat and
inflow-outflow boundary conditions. The set-up is based on an LES study by
Boppana et al. (2013), in which the flow is compared against an experiment
conducted by Richards et al. (2006). Here the simulations are run at full scale,
i.e. 100 times larger than those studies. The geometry is a single cube with
side length h = 19 m, with its leeward face temperature (θwall) set to a higher
temperature than the ambient air (θref). In the original set-up the cube is
grid-aligned, and in order to test the ability of the IBM to handle non-aligned
geometries, this is compared with a case where the cube has been rotated with
respect to the grid, but with the same physical oncoming flow. The original set-
up domain size is Lx×Ly ×Lz = 10h× 8h× 6h, with grid size Nx×Ny ×Nz =
320× 256× 192. The rotated set-up domain size is 8h× 8h× 6h, with grid size
256× 256× 192. A turbulent inflow boundary condition was generated using a
precursor simulation that was set up to match the velocity and turbulent kinetic
energy profiles of the comparison studies.

Figure 3 shows the mean scaled potential temperature (θ̄−θref)/(θwall−θref)
and mean velocity vectors in the wake of the cube at z/h = 0.5 for each case.
There is fairly good agreement, indicating the wall function implementation is
reasonably invariant to whether the geometry is aligned with the grid.

7



(a) Original (b) Rotated

Figure 3: Contours of mean scaled temperature and mean velocity vectors at
z/h = 0.5.

5 Conclusion

The uDALES framework has been upgraded in order to address its major lim-
itations. The 2D domain decomposition provided by 2DECOMP&FFT means
the code is able to use a large number of processors on ARCHER2, and scales
as expected. The fully FFT-based pressure solver means that inflow-outflow
simulations can be reliably simulated with the same performance as periodic
simulations. The novel immersed boundary method is able to model non-aligned
geometries more faithfully. The features of uDALES v2.0 and their validation
are being written up as a journal paper.

This development has many applications to research into urban flows. The
performance upgrade makes it possible to run simulations at much higher res-
olution, thus enhancing the ability to capture small-scale flow features. It also
makes processes with relatively long timescales easier to simulate; for example
modelling a complete diurnal cycle of the atmospheric boundary layer. The
improved immersed boundary method is particularly advantageous for simula-
tions involving radiation, and when using the model to resolve realistic build-
ings. Finally, the fact that 2DECOMP&FFT is used for low-level functionality
means that any useful future development of this library and other frameworks
using it can potentially be harnessed; for example the new IO functionality
using ADIOS2 (Godoy et al., 2020) that was part of the ARCHER2 eCSE03-
02 project. Further work is currently underway to accelerate pre- and post-
processing routines and to enable the use of GPUs via the Excalibur project
Turbulence at the Exascale.

8



References

V. Boppana, Z.-T. Xie, and I. P. Castro. Large-eddy simulation of heat transfer
from a single cube mounted on a very rough wall. Boundary-layer meteorology,
147(3):347–368, 2013.

W. F. Godoy, N. Podhorszki, R. Wang, C. Atkins, G. Eisenhauer, J. Gu,
P. Davis, J. Choi, K. Germaschewski, K. Huck, et al. Adios 2: The adaptable
input output system. a framework for high-performance data management.
SoftwareX, 12:100561, 2020.

N. Li and S. Laizet. 2DECOMP&FFT-a highly scalable 2D decomposition
library and FFT interface. In Cray user group 2010 conference, pages 1–13,
2010.

J.-F. Louis. A parametric model of vertical eddy fluxes in the atmosphere.
Boundary-Layer Meteorology, 17(2):187–202, 1979.

Y. Ma and H. Liu. Large-eddy simulations of atmospheric flows over complex
terrain using the immersed-boundary method in the weather research and
forecasting model. Boundary-layer meteorology, 165:421–445, 2017.

K. Richards, M. Schatzmann, and B. Leitl. Wind tunnel experiments modelling
the thermal effects within the vicinity of a single block building with leeward
wall heating. Journal of Wind Engineering and Industrial Aerodynamics, 94
(8):621–636, 2006.

U. Schumann and R. A. Sweet. Fast fourier transforms for direct solution of
poisson’s equation with staggered boundary conditions. Journal of Compu-
tational Physics, 75(1):123–137, 1988.

I. Suter, T. Grylls, B. S. Sützl, S. O. Owens, C. E. Wilson, and M. van Reeuwijk.
udales 1.0: a large-eddy simulation model for urban environments. Geoscien-
tific Model Development, 15(13):5309–5335, 2022.

I. Uno, X. M. Cai, D. Steyn, and S. Emori. A simple extension of the louis
method for rough surface layer modelling. Boundary-Layer Meteorology, 76:
395–409, 1995.

9

Acknowledgement

This work was funded under the embedded CSE programme of the ARCHER2 UK 
National Supercomputing Service (http://www.archer2.ac.uk)


