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Abstract 
 
 
NEMO-FABM-ERSEM is a coupled numerical modelling system for simulating the 
marine environment, used by many research groups and led by Plymouth Marine 
Laboratory [1], National Oceanographic Centre [2] and the Met Office [3]. NEMO-
FABM-ERSEM is geographically versatile and able to address topics from Climate 
change to resource provision, pollutants etc. A conservative estimate is that 20 
individual users of this code addressing 15 separate projects have recently, are or will 
utilise ARCHER 2. 
This is a relatively expensive code system to run, especially as both model complexity 
and spatial resolution continues to increase. This report describes the performance 
optimization of the newest version of the code on Archer2 based upon simulations in 
the Northwest European Shelf, namely the AMM7 and AMM15 grids.  

1 Introduction 
 
3D coupled marine models such as NEMO-FABM-ERSEM represent the marine 
environment with a discrete grid of layered, (usually squared) prisms. A key 
characteristic of these models is their resolution, expressed as the distance between 
prisms and/or layers, with higher resolution generally providing more skilful 
simulations and better addressing issues at the scale of biological processes and 
stakeholder interaction. However, increasing resolution greatly impacts the 
computational and storage requirements for a given simulation. This introduces a 
balance between the desire to use the highest resolution/skill possible and the 
computational aspects; memory, I/O, and communication. As HPC platforms develop 
and we move towards ever higher resolution it is vital to ensure that code is optimised 
to obtain the maximum benefit from the available resources. In the case of NEMO-
FABM-ERSEM, simulations can be computationally expensive. By dedicating time to 
ensure the code is as optimized as possible to run on ARCHER2 significant time and 
resources can be saved. 
  
NEMO: The Nucleus for European Modelling of the Ocean (NEMO) [4] is a 
framework for ocean and climate modelling (www.nemo-ocean.eu). The ocean 
component of NEMO is a primitive equation model employed for a range of idealised, 
regional, and global ocean circulation studies. It provides a flexible tool for studying 
the ocean and the wider earth climate system over a wide range of space and time scales 
[5]. NEMO is coded in Fortran and makes use of the parallel HDF5/NetCDF and MPI 
libraries.  
 
FABM: The Framework for Aquatic Biogeochemical Models [6] provides a generic, 
easy to use, high performance coupling layer that connects a hydrodynamic model (1D 
column to 3D world ocean) with multiple available biogeochemical sub-models. 
FABM enables complex biogeochemical models to be developed as sets of stand-alone, 
process-specific modules with a layer of separation from the complexity of the spatial 
domain simulation. This approach has been adopted to implement several large 
ecosystem models in FABM, including ERSEM at PML. FABM is coded in Fortran, 



but it does not itself handle parallelization. Instead, it transparently works with any 
parallelization of the hydrodynamic model.  
 
This project will use NEMO v4.0.4 coupled with FABM v1.0. This coupled code is 
provided by PML and available for download on github [7].  
 
ERSEM: The European Regional Seas Ecosystem Model [8] is a complex marine 
ecosystem model which has grown in scale and scope in recent years. It addresses 
biogeochemical and ecological systems in many applications in global regional seas 
and more recently the global ocean, engaging in a range of problem solving, predictive 
and impact studies.  
Its strength and uniqueness lies in its ability to define relatively complex ecosystems in 
both pelagic and benthic environments. The model utilises a functional group approach 
to describe 4 classes of phytoplankton, 3 classes of zooplankton, bacteria, dissolved 
and labile organic matter (DOM) and 3 size-classes of particulate organic matter 
(POM). This configuration introduces O(50) additional state variables with associated 
diagnostics and parameter fields into the system at significant computational cost.  
ERSEM is also coded in Fortran and relies on FABM to handle all communication with 
the hydrodynamic model.  
 
XIOS: XML-IO Server [9] is a library dedicated to the management of netcdf format 
input and output within models such as NEMO. It parses XML files at runtime for 
flexibility and allows for temporal and spatial post-processing operations. Additionally 
XIOS is frequently run asynchronously in server mode on separate core(s) so data 
writing does not slow down computation. XIOS is coded in C++. 
This project used XIOS v2.5, available for download via svn [10] 
 
At the start of ARCHER2 the NEMO community performed some preliminary tests on 
various core counts and packing strategies for the physics-only set up on a different 
domain to AMM7, with findings presented in the ARCHER2 documentation [11]. As 
part of porting the NEMO-FABM-ERSEM code to ARCHER2, some initial timing 
experiments have also been performed to assess the impact of varying the number of 
output variables or the number of cores.  
 
The work presented here expands on these initial experiments to fully understand how 
the code performs on ARCHER2. We will breakdown the code to identify the most 
expensive routines and analyse the impact various components have on performance. 
This includes changing the number of cores used, the core placement strategy, 
increasing/decreasing the model complexity, increasing the resolution of the model and 
other smaller options. Any avenues for optimisation will be investigated and 
recommendations provided to ensure future simulations run as efficiently as possible 
on ARCHER2 and future HPC platforms. 
 
 
 
 
 
 



2 Installation of NEMO-FABM-ERSEM on Archer2 
 
2.1 Installation Configuration and Datasets 
The benchmarking experiments are performed on two models of the northwest 
European shelf, known as the Atlantic Margin Model (AMM). 
 
The first, AMM7 is a key simulation used frequently by multiple UK institutions. It has 
a horizontal resolution of 7 km and uses O(3x106) active grid cells. A NEMO-ERSEM 
configuration of AMM7 will typically use around 1200 cores as this is the limit of 
parallelisation for this grid.  
 
The next generation version of this domain is AMM15, which increases the resolution 
to 1.5km with O(4.5x107) active cells [12]. The typical core count for this experiment 
is yet to be determined.  
 
The following repository is available to set up this AMM7 configuration on ARCHER2: 
https://github.com/dalepartridge/AMM7-NEMO4-FABM-setup  
It contains scripts to source the software from the relevant repositories and compile 
them under the cray programming environment. There are also all configuration files 
needed to run the experiment, with larger files available from the n01 shared area: 
/work/n01/shared/dapa/AMM7/. 
 
AMM15 uses the same code base as the AMM7 experiment. Run configuration files 
and the larger input files are all available from the n01 shared area: 
/work/n01/shared/dapa/AMM15.  
 
The general physical and computational characteristics of NEMO-FABM-ERSEM 
with AMM7 and AMM15 datasets are compared in Table 1. 
 



 

Characteristics AMM7 Dataset AMM15 Dataset 

Horizontal Grid Points ~110,000 ~2.0 Million 

Depth Levels 51 51 

Typical Number of Compute 
Nodes 6-24 12-200 

Typical Nemo Tasks 100-1200 1000-20000 

Typical Representative 
Benchmark Run Time (from 

RESTART) 
10 minutes 60 minutes 

Output Data ~ 10 GBytes ~ 125 GBytes 

 
Table 1 Computational Characteristics for AMM7 & AMM15 Datasets 

 
2.2 Use of Profiling Tools 
The NEMO code itself generates detailed performance data based on a multitude of 
internal timers within the code.  Where a wider range of performance data is required, 
we have exploited the CrayPat and CrayPat-Lite profilers [13] provided as part of the 
Archer 2 service. CrayPat can add large runtime overheads, including the generation of 
huge amounts of profiling data, even for a single NEMO-FABM-ERSEM run with 
restricted timesteps. CrayPat-Lite has therefore been the profiler tool favoured here. 
The procedure for generating profiling data on Archer2 via CrayPat is described in [13]. 
One extra step required for CrayPat profiling of NEMO-FABM-ERSEM is to manually 
rebuild the lib_fcm__nemo.a and lib_fcm_xios_server.a libraries after the 
compilation. This can be achieved by locating the directories obj containing the object 
files of the NEMO and XIOS installations and from there, issuing the commands below 
to rebuild the libraries: 
 
ar rs ../lib/lib_fcm__nemo.a *.o 
 



ar rs ../lib/lib_fcm_xios_server.a *.o 
 

2.3 Running NEMO-FABM-ERSEM Jobs on Archer2 
NEMO-FABM-ERSEM runs on Archer2 usually take place using the SLURM batch 
system [13]. Users can choose to run NEMO-FABM-ERSEM using either attached or 
detached mode. A description of both modes is provided in [11]. All the findings 
described in this report derive from jobs run in detached mode, where external XIOS 
I/O-servers to help manage the large volumes of data and the user must specify the 
placement of clients and servers on different cores throughout the node using the -cpu-
bind=map_cpu:<cpu map> srun option to define a CPU map or mask. This process 
was simplified by employing the mkslurm_hetjob script developed by Andrew 
Coward at the UK National Oceanography Centre. The listing of a SLURM batch script 
generated by mkslurm_hetjob for a parallel job involving 504 ocean cores and 6 XIOS 
servers is provided in Appendix A. For optimal performance, each XIOS server task is 
located within its own exclusive NUMA region. From December 2022, the default 
CPU frequency on Archer2 is set to 2.0 GHz, however the benchmarking and profiling 
runs presented in this report were undertaken prior to this date and therefore the default 
frequency used throughout is 2.25 GHz. Testing different CPU frequencies and 
measuring energy consumption is discussed in Section 4.4. 
 

3 Performance Analysis for NEMO-FABM-ERSEM on Archer2 
 
3.1  Parallel Scalability Summary for AMM7, AMM15 Datasets on Archer 2  
 

 
 



 
Figure 1 Parallel Scalability of NEMO-FABM-ERSEM on Archer2, AMM7 Dataset (no gaps 
between Ocean Cores (g0 setting) and 1 XIOS server per Archer2 node). Boxed labels represent 
the number of points per subdomain. 

 

 

 

Figure 2  Parallel Scalability of NEMO-FABM-ERSEM on Archer 2, AMM15 Dataset (no gaps 
between Ocean Cores (g0 setting) and 1 XIOS server per Archer2 node). Boxed labels represent 
the number of points per subdomain 

 

The parallel performance of NEMO-FABM-ERSEM for the AMM7 and AMM15 
datasets on Archer2 is shown in Figure 1 and Figure 2. For both datasets, the NEMO-
FABM-ERSEM (or Ocean Cores) tasks are configured to fill compute nodes densely 
with no spacing intervals (g0) (see Section 4.1.2 for more details). One XIOS I/O server 
is dedicated to each node and occupies its own 16-way NUMA region on each node. 
Output frequency for representative datasets is set as daily. For AMM7, parallel scaling 
is good at lower core counts, but only small relative performance gains are observed at 
the higher core counts. For AMM15, parallel scaling is almost ideal for up to 100 
compute nodes, but the speed-up begins to decrease at 200 compute nodes. An 
important factor for the parallel scaling is the relative subdomain size per task, shown 
as labels in the figures. Providing this local compute requirement is sufficiently large, 
the relative costs of data exchange between tasks, such as halo-exchange operations, 
remains low. As the number of compute nodes becomes relatively large, halo exchange 
communication overheads begin to impact performance. The halo exchange functions 
in NEMO have been the focus of past optimisation efforts, and this is reflected in the 
generally impressive parallel strong-scaling of the target dataset (AMM15) for Archer2.  
 
 
 



 

 
 
Figure 3 Timing Breakdown by Routine (Average time (s) across MPI processors) 

 
NEMO-FABM-ERSEM can be configured to produce a range of quite detailed 
performance data at the end of each run. A defined timing framework is available to 
developers within the code to facilitate these measurements where required. Figure 3 
shows the breakdown of timings in seconds from within the top five time-consuming 
NEMO-FABM-ERSEM subroutines for a range of parallel runs on Archer 2. Figure 4 
shows the breakdown of timings for the same subroutines as percentage of overall 
runtime and also includes data from AMM7 benchmarks. Developers control the 
scope of the timers with explicit on/off switches and are generally constructed as   
inclusive timers in that they include time from ‘children’ routines called from within, 
unless those routines have their own timer switched on.  
 
Details of the subroutines listed are given in Appendix B. Good parallel scaling 
behaviour per subroutine is represented by descending clusters of columns in Figure 3 
and a flat profile of columns within a cluster in Figure 4. It is evident in the two 
figures that the parallel scaling properties of the main NEMO routines trc_nxt, 
trc_adv and the main FABM routine trc_sms_fabm is very good for this range of 
benchmark runs. These subroutines undertake much of the calculation and data halo-
exchanges in the calculations and appear to be well optimised. The subroutine 
trc_wri undertakes most of the data outputs to disk, utilising the associated XIOS 
servers. The parallel scaling for this operation is good out to 8400 tasks, but flatlines 
at 16800, indicating that the output is no longer scaling with cores used and is now 
becoming a significant overhead (11% of overall time for 16800 tasks). The 
subroutine stp manages the time stepping for the ocean, tracing and ice. Although it 



does not involve high levels of computation or message passing itself, the 
performance of this routine is a measure of the overall load-balancing within the code. 
It is shown in Figure 4 that there is a significant increase in the percentage of runtime 
spent in stp from 6.4% for 8400 tasks to 26.9% for 16800 tasks, indicating that the 
load-balancing of the computation across tasks is deteriorating.   
 
  
 

 
 
 
Figure 4 Timing Breakdown by Routine (Average time (%) across MPI processors) 

 
3.2 Parallel Performance Profiling 

  
3.2.1 Identifying Computational Hotspots with Craypat 
 
A more detailed timing profiling, involving all routines and all source code lines can 
be obtained by using the Craypat profiler on Archer2. The profiling was undertaken 
following the guidance in [13] and the profiling report with source code line 
information was generated via the command  
 
$> pat_report -O src+ca <profiling_data_directory>  
 
Profiling was only undertaken on the smaller dataset AMM7 due to the large amount 
of tracing and sampling data generated, even for runs involving reduced numbers of 
timesteps. Figure 4 shows that the timing distribution is roughly equivalent in both 



AMM7 and AMM15 cases. An extract from a typical Craypat profiling report that 
traces and samples an AMM7 calculation involving two Archer2 compute nodes is 
provided in Appendix C. Unlike the internal timers in NEMO, timing reports here are 
exclusive – representing only time spent in the subroutine or function itself thereby 
excluding time spent in any called functions or subroutines. 
  
The profiling identifies the subroutine tra_adv_fct (called from trc_adv) as the 
most computationally expensive, consuming 8.6% of overall run time. This is a 
routine that computes the now trend due to total advection of tracers and adds it to the 
general trend of tracer equations using a 2nd or 4th order Flux-correction scheme.  
The source code line identified within subroutine tra_adv_fct as a computational 
hotspot is within the loop: 
 

 
 
The subroutine tra_adv_fct involves several such loops involving large multi-
dimensional array updates, which already have vectorization optimisations applied via 
CCP macros to, for example, to enable loop unrolling. The only FABM routine to 
consume significant compute time is fabm_work.f90, which consumed 6.3% of 
overall runtime.  
 
Upon further analysis, tra_adv_fct and several other computationally expensive 
routines highlighted by the CrayPat profiler (such as lbclnk.f90,the routine that 
manages nearest-neighbour halo exchanges) had evidently been written and tuned 
with good performance in mind. Any further improvements would have involved 
work beyond the scope of this project.  
 
 
3.3 Effect of Passive Tracers at scale 
 
Typically, ERSEM runs with ~52 tracers, with complex interactions between them. 
Whilst this is the current configuration, in the future more/less complexity could be 
used which would have a large impact on the runtime, especially for high-resolution 
models.  
One way to analyse the impact of changing the quantity of variables is to convert all 
the tracers to be independent, or ‘passive’. This is not reflective of what would be 
done in practice as these variables no longer have any interaction between them, 
however it enables quickly running the model with any number of variables to see 
how the runtime scales. Certain parts of the code will now not be performed, but key 
functions such as I/O still occurs. Task arrangements (see Section 4.1) for the tracer 



timing experiments presented in this section use a configuration of one I/O server per 
Archer2 node, occupying its own NUMA region, and fully packed ocean tasks (g0) 
across the remaining cores. 
 
 

 
 
 
Figure 5 Timing breakdown (secs) by subroutine for 588 & 1200 MPI task NEMO-FABM-
ERSEM runs involving varying numbers of passive tracers (AMM7 Dataset)  



 
 
 
Figure 6  Timing breakdown (%) by subroutine for 588 & 1200 MPI task NEMO-FABM-
ERSEM runs involving varying numbers of passive tracers (AMM7 Dataset)  

Figure 5 and Figure 6 show the change in the computational load for the top five time-
consuming subroutines in NEMO-FABM-ERSEM as the number of passive tracers 
varies between 15 and 90 for AMM7. For details of these subroutines see Appendix B. 
The timing profile of the matching colours (dashed lines and solid lines) in the figures 
show that similar timing patterns are obtained with both sizes of parallel MPI task 
arrays. As expected, the most affected subroutine is trc_nxt, which computes 
passive tracer fields at the next time-step and applies lateral boundary conditions. Time 
spent in this routine increases from around 8-10% (15 passive tracers) to around 38% 
(90 passive tracers). Time spent in subroutine tra_adv, computing the ocean tracer 
advection trend, increases the least as the number of passive tracers increases. The 
percentage of compute time spent in the other subroutines, including the main FABM 
routine trc_sms_fabm, remains relatively constant as the number of passive tracers 
varies. The percentage of total compute time spent in routine trc_wri, which is the 
most sensitive to I/O overheads, increased from 2.5% (15 passive tracers) to 6.1% (90 
passive tracers) on 1200 tasks.  
 
 
3.4 Effect of Active Tracers at Scale 

 
ERSEMs default set up includes 4 phytoplankton and 3 zooplankton groups, a so 
called 4P3Z model. The model can be simplified by reducing the number of groups, 
for example to 3P2Z or 2P1Z which reduces the number of variables from 52 to 45 
and 38 respectively. This is a more realistic model simplification than the passive 



tracer approach described above. Task arrangements (see Section 4.1) for the tracer 
timing experiments presented in this section use a configuration of one I/O server per 
Archer2 node, occupying its own NUMA region, and fully packed ocean tasks (g0) 
across the remaining cores. 
 
 

 
 
Figure 7 Timing breakdown (secs) by subroutine for 588 & 1200 MPI task NEMO-FABM-
ERSEM runs involving varying numbers of active tracers (AMM7 Dataset)  

 
 



 
 
Figure 8 Timing breakdown (%) by subroutine for 588 & 1200 MPI task NEMO-FABM-ERSEM 
runs involving varying numbers of active tracers (AMM7 Dataset) 

 
Figure 7 and Figure 8 show the change in the computational load for the top five time-
consuming subroutines in NEMO-FABM-ERSEM as the number of active tracers 
varies between 38 and 52 (default) for AMM7. The relative timing breakdown between 
subroutines for both sets of parallel runs is similar to that obtained from the passive 
tracer experiments in the previous section, though the time spent in the FABM main 
routine trc_sms_fabm now increases to around 10-14%. The percentage of total 
runtime spent in routine trc_wri, which is the most sensitive to I/O overheads, remained 
roughly constant at around 6% for all the AMM7 active tracer runs involving 1200 MPI 
tasks. 
 
 



 
 
Figure 9 Timing breakdown (secs) by subroutine for 4200 & 8400 MPI task NEMO-FABM-
ERSEM runs involving varying numbers of active tracers (AMM15 Dataset) 

 
 

 
 
 



 

Figure 10 Timing breakdown (%) by subroutine for 4200 & 8400 MPI task NEMO-FABM-
ERSEM runs involving varying numbers of active tracers (AMM15 Dataset)  

The change in timing breakdowns in NEMO-FABM-ERSEM when varying the number 
of active tracers for the significantly larger dataset AMM15 is shown in Figure 9 and 
Figure 10. A flatter profile of timing variance than with AMM7 is observed here for 
both the parallel job sizes, with percentage time spent in each subroutine remaining 
roughly the same regardless of the number of active tracers. This is likely due to 
AMM15 having better load balance at the core counts used, as shown in Figure 2. The 
percentage time spent in the FABM main routine trc_sms_fabm increases to around 
17-23% for AMM7, but this relative load slightly decreases as the number of active 
tracers increases to 52 (default). The percentage of total runtime spent in routine 
trc_wri, which is the most sensitive to I/O overheads, increased from 8.9% (38 
active tracers) to 10.3% (52 active tracers). 
 
 
 
3.5  Load-balance variation with node count 
 

 
 
Figure 11 Variation of NEMO-FABM-ERSEM MPI task compute times (AMM7 & AMM15).  

The parallel scaling performance of NEMO-FABM-ERSEM on Archer2 is reported 
and discussed in Section 3.1. For the larger AMM15 dataset, the parallel speed-up starts 
to decline at runs involving 16800 cores on 200 compute nodes. Box plots summarising 
the variance of individual MPI task compute times within each parallel run are shown 
in Figure 11. Multiple lower outlier points (less than 3/2 of lower quartile) are 
characteristic of all the box plots, reflecting a greater number of land-based points 
within a sub-domain. The most extreme of these outliers represent a small set of 
generally idle MPI tasks which have been allocated entirely land-based sub-domains, 



as all available ocean sub-domains have been allocated to other tasks. Compute time 
variance increases with increasing core counts and is greatest in the AMM15 run on 
16800 tasks. A combination of this greater load-imbalance across the processor array 
and an increased communication vs computation ratio for smaller sub-domain sizes, 
discussed in Section 3.1, is responsible for the decreased rate of speed-up observed 
between 8400 and 16800 cores for AMM15 (Figure 2). 
 

4 Optimisations of NEMO-FABM-ERSEM on Archer2 
 
4.1 Optimal Configurations on Archer2  
 
4.1.1 XIOS Server Configuration 
Typical NEMO production runs perform significant I/O management to handle the very 
large volumes of data associated with ocean modelling. To facilitate this, NEMO ocean 
clients are interfaced with XIOS I/O servers. XIOS is a library which manages NetCDF 
outputs for climate models. NEMO uses XIOS to simplify the I/O management and 
allow the configuration of dedicated processors to manage the large volumes of data. 
NEMO-FABM-ERSEM large-scale parallel runs analysed in this project are 
undertaken in detached mode, where ocean clients and external XIOS I/O server 
processors are separately defined within the job submission script. The analysis of I/O 
overheads reported in the NEMO-FABM-ERSEM runs for both the AMM7 and 
AMM15 datasets confirmed that the general rule-of-thumb of 1 dedicated XIOS server 
per Archer2 node, exclusively occupying a dedicated 16 core NUMA region was the 
optimal I/O configuration. 
 
4.1.2 Ocean Client gap intervals  
NEMO-FABM-ERSEM users can also define an ocean client server gap (known here 
as g) to increase the compute resources available to an individual MPI task on a 
compute node, particularly memory capacity and memory bandwidth.  Three levels of 
under-populating are analysed – g0 (no gaps), g2 (gap every 2 cores) and g4 (gap every 
4 cores).  As expected, shown in Figure 12, the highest level of underpopulation, g2, 
leads to significantly faster performance per core and the full occupation g0 the slowest.  
 



 
 
 
Figure 12 Timing experiments with different ocean client spacings on Archer 2 (AMM7 dataset) 

 
However, if overall resource cost, rather than speed is the primary concern, then the 
fully occupied g0 ocean client configuration is preferable, as shown in Figure 13, 
particularly on larger numbers of compute nodes. 



 
  
 
Figure 13 Cost analysis with different ocean client spacings (g) on Archer 2 (AMM7 dataset) 

 
Another consideration when configuring runs is the overall memory requirements of a 
particular dataset. For example, the AMM7 dataset required a minimum of two half-
populated Archer 2 nodes to provide enough memory capacity for the calculation. 
AMM7 runs involving one node fully populated with the same overall number of ocean 
clients failed due to memory limitations. Each standard memory Archer node contains 
256 GiB of RAM.  
 
 

 
4.2  I/O Performance 

 
NEMO-FABM-ERSEM calculations typically require tens of gigabytes of input data 
and can produce hundreds of gigabytes of output data. Individual file sizes of around 
60GBytes are output by the code during benchmark runs for AMM15. Dealing with 
this large volume of data efficiently during a large-scale parallel run is the main impetus 
for configuring dedicated XIOS servers on each node. On Archer2 there are several 
settings affecting the behaviour of the Lustre filesystem that can be applied to runs 
which can potentially improve I/O performance.  
 
 
 



4.2.1 Striping I/O Across Object Storage Targets (OSTs) 
 
On Archer2, large datafiles must be striped across multiple OSTs to benefit from the 
parallel nature of Lustre. To be generally efficient for a wide range of job sizes and 
characteristics, the default settings on Archer2 do not maximise the use of all available 
use OSTs. However, the large-scale, data intense nature of NEMO-FABM-ERSEM 
calculations necessitate the use of all available OSTs where possible. This can be 
achieved by changing the properties of the directories where I/O takes place on Lustre 
via the setting 

 
$> lfs setstripe -c -1 <directory name> 
 
A detailed description of striping can be found in the Archer2 documentation [23].   
 
 
4.2.2 I/O Environment Settings 
 
It is also recommended to instruct the running application to use collective calls when 
undertaking parallel I/O to a single shared file (as is typically the case with these runs). 
This can be achieved via the environment setting 
 
$> export FI_OFI_RXM_SAR_LIMIT=64K 
 
 
With both the environmental and striping I/O settings applied there is a noticeable 
improvement in the overall performance of NEMO-FABM-ERSEM. Table 2 compares 
the timing results from default I/O settings and optimised I/O for AMM15 on Archer 
2. The relative parallel I/O performance gains become more notable as the number of 
cores used increases. 

 
Number of 
Compute 
Nodes 

Number of 
Ocean Cores 

Runtime 
(Default I/O 
settings) (s) 

Runtime 
(Optimised 
I/0 settings) 
(s) 

% Performance 
Improvement 
from I/O 
settings  

12 1008 9887 9844 0.44 

25 2100 3929 3877 1.34 

50 4200 2327 2271 2.47 

100 8400 1302 1253 3.91 

200 16800 898 868 3.46 
 
Table 2 Relative performance of AMM15 calculations with I/O settings on/off. 

 



4.3 FABM-specific settings 
 

Users can specify a range of FABM variables to be applied during the preprocessing 
stage [14]. The most relevant of these settings for performance optimization are 
_FABM_MASK_TYPE_ and _FABM_CONTIGUOUS_. 
 
Specifying _FABM_MASK_TYPE_ explicitly sets the data type of the FABM spatial 
mask. For optimal performance this should match that used internally by the physical 
host to specify the mask, thereby allowing the mask to be transferred via simple pointer 
operations rather than data copies. _FABM_MASK_TYPE_ is set to different data 
types in the miscellaneous FABM source code drivers. 
 
The _FABM_CONTIGUOUS_ variable specifies that all arrays passed to FABM will 
be contiguous in memory.  Specifying this allows the compiler to make certain 
assumptions that can be used to optimize array operations. 
 
4.4 Optimal Energy Consumption on Archer2 
 
Users on Archer2 can control the CPU frequencies of the compute nodes assigned to 
their batch jobs by setting the environment variable SLURM_CPU_FREQ_REQ. For 
example, to set the CPU frequency to 2.25GHz the following line would be included 
in the batch script 
 
export SLURM_CPU_FREQ_REQ = 2250000 
 
Only three different CPU frequencies are permitted – 2.25GHz, 2.0GHz (the default 
since Dec 2022) and 1.5 GHz. The impact of varying the CPU frequency on 
performance and energy consumption for NEMO-FABM-ERSEM with the AMM15 
dataset on 50 compute nodes (with g0 ocean core spacing) is reported in Table 3. 
  

CPU Frequency (GHz) Elapsed Time (s) Consumed Energy (MJ) 

1.5 3330 52.29 

2.0 2781 58.11 

2.25 2326 61.77 
 

Table 3 Timing and energy consumption measurements for AMM15 dataset on 50 compute 
nodes. 

The data from Table 3 shows that the fastest run is, as expected, associated with the 
CPU clock frequency of 2.5GHz. However, if energy efficiency is prioritised over 
speed, the lowest CPU frequency of 1.5 GHz is the optimal setting.  



 
 
Figure 14 Summary of NEMO-FABM-ERSEM performance and energy consumption with 
varying CPU frequencies  

 
 

5 Conclusions 
 
This project has successfully installed the latest version of NEMO-FABM-ERSEM on 
Archer2 to run the next-generation Atlantic Margin Model AMM15 with an increased 
grid resolution of 1.5km. The parallel performance of the code, particularly with this 
larger dataset, is generally very good and large-scale runs using tens of thousands of 
cores allow simulations to be undertaken relatively quickly, whilst handling the large 
volume of output data efficiently. Large-scale profiling analysis of the code 
performance on Archer2 using Craypat has been undertaken and computational 
hotspots in the source code have been identified and investigated. Detailed internal 
timing breakdowns are presented that demonstrate how the computational load varies 
within the code with core count for both AMM7 and AMM15, including varying the 
numbers of passive and active tracers. Alternative task-to-core placement 
configurations within a compute node have been investigated for optimising both 
performance and resource costs on Archer2 and recommended settings have been 
determined. Good parallel I/O performance is highly important for dealing with datasets 
of this size. To achieve this, optimal settings for striping across processors and other 
I/O environment settings are provided. Finally, an analysis of overall energy 
consumption of the code is provided to help users prioritise either optimal performance 
or optimal energy efficiency. 
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Appendices 
 

Appendix A 
 
Archer2 SLURM job submission script example, created by the script 
mkslurm_hetjob. 
 
 
#!/bin/bash 
#SBATCH --job-name=AMM15-504 
#SBATCH --time=06:00:00 
#SBATCH --account=ecsead06 
#SBATCH --partition=standard 
#SBATCH --qos=standard 
#SBATCH --output=%x.%j.out 
#SBATCH --error=%x.%j.err 
 
#SBATCH --nodes=6 
#SBATCH --ntasks-per-core=1 
 
# Created by: mkslurm_hetjob -S 6 -s 16 -m 1 -C 504 -g 4 
-N 128 -t 00:50:00 -a ecsead06 -j AMM15-504 -v False 
 
module swap craype-network-ofi craype-network-ucx 
module swap cray-mpich cray-mpich-ucx 
module load cray-hdf5-parallel/1.12.0.7 
module load cray-netcdf-hdf5parallel/4.7.4.7 
export OMP_NUM_THREADS=1 
export FI_OFI_RXM_SAR_LIMIT=64K 
 
cat > myscript_wrapper.sh << EOFB 
#!/bin/ksh 
# 
set -A map ./xios_server.exe ./nemo.exe 
exec_map=( 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ) 
# 
exec \${map[\${exec_map[\$SLURM_PROCID]}]} 
## 
EOFB 
chmod u+x ./myscript_wrapper.sh 
 
srun --mem-bind=local \ 
--ntasks=510 --ntasks-per-node=85 --cpu-
bind=v,mask_cpu:0x1,0x10000,0x20000,0x40000,0x100000,0x20
0000,0x400000,0x1000000,0x2000000,0x4000000,0x10000000,0x
20000000,0x40000000,0x100000000,0x200000000,0x400000000,0
x1000000000,0x2000000000,0x4000000000,0x10000000000,0x200
00000000,0x40000000000,0x100000000000,0x200000000000,0x40
0000000000,0x1000000000000,0x2000000000000,0x400000000000
0,0x10000000000000,0x20000000000000,0x40000000000000,0x10
0000000000000,0x200000000000000,0x400000000000000,0x10000
00000000000,0x2000000000000000,0x4000000000000000,0x10000
000000000000,0x20000000000000000,0x40000000000000000,0x10
0000000000000000,0x200000000000000000,0x40000000000000000
0,0x1000000000000000000,0x2000000000000000000,0x400000000
0000000000,0x10000000000000000000,0x20000000000000000000,
0x40000000000000000000,0x100000000000000000000,0x20000000
0000000000000,0x400000000000000000000,0x10000000000000000
00000,0x2000000000000000000000,0x4000000000000000000000,0
x10000000000000000000000,0x20000000000000000000000,0x4000
0000000000000000000,0x100000000000000000000000,0x20000000
0000000000000000,0x400000000000000000000000,0x10000000000
00000000000000,0x2000000000000000000000000,0x400000000000 
0000000000000,0x10000000000000000000000000,0x200000000000
00000000000000,0x40000000000000000000000000,0x10000000000
0000000000000000,0x200000000000000000000000000,0x40000000
0000000000000000000,0x1000000000000000000000000000,0x2000
000000000000000000000000,0x4000000000000000000000000000,0
x10000000000000000000000000000,0x200000000000000000000000
00000,0x40000000000000000000000000000,0x10000000000000000
0000000000000,0x200000000000000000000000000000,0x40000000
0000000000000000000000,0x1000000000000000000000000000000,
0x2000000000000000000000000000000,0x400000000000000000000
0000000000,0x10000000000000000000000000000000,0x200000000
00000000000000000000000,0x4000000000000000000000000000000
0 ./myscript_wrapper.sh 

 
  



 
Appendix B 

 
The six main routines consuming compute time in NEMO-FABM-ERSEM. 
 

Subroutine  trc_adv 

Location   TOP/TRP/trcadv.f90 

Origin  NEMO Source Code 

Purpose  Compute the ocean tracer advection trend 

Method  Update after tracers (tra) with the advection term 
following nadv 

 

Subroutine trc_nxt 

Location TOP/TRP/trcnxt.f90 

Origin NEMO Source code 

Purpose Compute the passive tracers fields at the next time-step 
from their temporal trends and swap the fields. 

Method Apply lateral boundary conditions on (ua,va) through a 
call to lbc_lnk routine 

 
 

Subroutine  trc_wri 

Location  TOP/TRP/trcwri.f90 

Origin  NEMO Source Code 

Purpose Output passive tracers fields and dynamical trends 
 
 

Subroutine  trc_sms_fabm 

Location TOP/FABM/trcsms_fabm.f90 

Origin  FABM Source Code 

Purpose FABM Main Routine 
 
 

Subroutine stp 

Location OCE/step.f90 



Origin NEMO Source Code 

Purpose:  Manager of the ocean, tracer and ice time stepping 
 

Subroutine tra_adv 

Location OCE/TRA/traadv.f90 

Origin NEMO Source Code 

Purpose:  Compute the ocean tracer advection trend 

Method: Update (ua,va) with the advection term following nadv 
 
  



Appendix C 
 
Craypat profiling example for NEMO-FABM-ERSEM. 
 

 


