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Abstract

We summarise the different aspects of Firedrake deployment that we have improved for our HPC users
and additional benefits for ARCHER2 users.

1. A Spack package has been created for Firedrake many of its dependencies as well as determining a
suitable Spack configuration and package workflow for ARCHER2.

2. Firedrake has been containerised for HPC resulting in a Singularity container suitable for use on
ARCHER2.

3. A fix has been provided to PETSc/petsc4py to reduce the occurrence of deadlock issues when running
Firedrake scripts in parallel on HPC systems.

1 Introduction

Firedrake is an automated system for the solution of partial differential equations using the finite element
method (FEM) and sophisticated code generation. The goal for this project was to make installing and
running the Firedrake framework[3, 13] — and its many dependencies — simple and robust on any HPC
platform, with a primary focus on ARCHER2. We are confident in stating that this has been accomplished.
Whilst there is still maintenance and upkeep of the devised solutions we have largely achieved what we set
out to accomplish in this eCSE.
Namely we have:

1. Developed a Spack package for Firedrake.

2. Built a Singularity container for ARCHER2.

3. Improved the robustness of PETSc’s Python support.

We have reordered these accomplishments in what follows to highlight the revised importance compared
to the initial proposal. Namely that the development of a Spack package for Firedrake was a more compli-
cated undertaking than originally thought, but additionally this work may have a larger impact for a wider
range of ARCHER2 users.

2 Firedrake Spack Package

Spack[6, 12] is a popular choice of package manager for HPC users to install packages with complex de-
pendencies. Firedrake previously did not support installation via Sapck, but it is one of the few package
managers capable of delivering the fine grained control over build dependencies and is designed with HPC
in mind. Furthermore, Spack can take advantage of any dependencies already available on a given system,
either available through the OS or through the module system.

2.1 Previous situation

Prior to this work the installation path was the same on a HPC system as it would be on any other computer,
namely use the Firedrake install script (listing 1). The firedrake-install command is a custom written
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1 curl -O

https ://raw.githubusercontent.com/firedrakeproject/firedrake/master/scripts/firedrake -install

2 python3 firedrake -install

Listing 1: Firedrake install script install commands

Python script which can take numerous configuration arguments and is suitable for building Firedrake to
the exact user specification.

Command line arguments can be used to specify the MPI distribution, an existing PETSc build if the
user didn’t want Firedrake to build its own, which BLAS/LAPACK libraries to link against and any other
additional packages the user may want to install. Much of the work done by this install script is to overcome
limitations in each dependency’s own build system. It is important for Firedrake that everything is built
using the same MPI distribution, since if the wrong distribution gets initialised by a package, PETSc will
not be able to start. For instance, if mpi4py is built against OpenMPI and PETSc uses MPICH, the
installation is broken. This is quite a common situation for other projects, but for Firedrake the situation
is further complicated by dependencies in Python packages. For instance, PETSc and Numpy must both
be linked against the same BLAS/LAPACK libraries, to prevent a FORTRAN ABI mismatch. If PETSc
builds against a system install of NETLIB BLAS/LAPACK and Numpy uses the OpenBLAS bundled inside
a pre-built wheel, again the installation is broken.

Many special configuration cases have been coded into firedrake-install to ensure that, on systems
that we are aware of users targeting, the script generates a working Firedrake environment. The issue on
HPC is when installation fails, users may be forced to rewrite parts on the installation script for the system
they are on in order to get installation to succeed. For the end user the completed installation on their
system is a Python virtual environment, which is self–contained as much as possible. This is the desktop
user experience that we aim to recreate with the Spack package manager for HPC users.

Figure 1: A directed graph showing the complexity of Firedrake’s dependencies. Firedrake is highlighted at
the top in red, Python as dark green and Python packages as light green. The orange circle is PETSc and
all remaining pale blue circles are compiled dependencies. Generated by the command:
spack graph -d py-firedrake %gcc ^mpich ^openblas > py-firedrake.dot

2.2 Aims

From the outset we wanted any alternative installation to satisfy the following criteria:

1. To produce a working Firedrake installation on HPC machines.

2. To have the same (or as similar as possible) functionality to a regular script based Firedrake installa-
tion.

3. The new installation should require as little manual intervention as possible and should not require
editing installation scripts or packages to succeed.
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4. Fit entirely into the chosen (Spack) framework. That is, not to require additional functionality that
isn’t present in the existing framework.

5. To make the installation more extensible and better compatible with external and alternative package
providers, as are often present on HPC.

2.3 Spack

Spack was chosen as the build framework due to its explicit support for HPC and ease of installation for a
HPC user, rather than administrator. Spack already supports building many of Firedrake’s dependencies,
reducing the burden of maintenance for Firedrake developers. There is also a concerted effort in the long term
maintenance of Spack, many of the US national laboratories are now using Spack and software sustainability
groups such as xSDK[9, 10] require packages to be Spack installable. However, one criticism we have of the
Spack package manager is the amount of work for a new user to learn and configure the tool. We outline
configuration here and have detailed instructions available online[5, 4].

Before building Firedrake, Spack needs to be installed and configured to run on on ARCHER2. Spack
can be installed on any UNIX or UNIX like system, but special care must be taken on a HPC facility to
ensure functionality with the rest of the system packages.

The “installation” of Spack is straightforward, it requires cloning the Spack git repository and calling an
activation script. Importantly, if there is no system installation of Spack, these steps can be performed easily
as a HPC user without the need for administrative privileges. Spack even supports “chaining” installations,
where one instance of Spack can use the packages from another instance. This will initially be very useful
to us, as package updates that we have contributed are not yet in a versioned Spack release and many HPC
systems will not update system modules unless there is a pressing reason to do so.

It is essential that a working Python interpreter is loaded as Spack is a Python program, the OS Python
is often not sufficient — out of date and missing key internal components can prevent Spack from working
correctly. It is our recommendation to load a Python module (such as cray-python on ARCHER2) if it is
available before calling the spack activation script. After the activation step any Spack command can be
invoked at the command line and users can start installing packages.

However, it is valuable to spend time configuring Spack for the HPC being used system.

2.4 Setup

Without any external configuration Spack uses whichever C, C++ and FORTRAN compilers are available on
the path and will not use any system packages, instead it will bootstrap its own build system. While useful
for systems with no package manager, or minimalist OS’s, this is not ideal for HPC. On a supercomputer we
wish to make use of specific optimised compilers, MPI distributions that take advantage of the interconnect
hardware and libraries optimised for the architecture. Spack allows users to utilise this software, usually
available as modules, through extensive configuration options.

The file1 $SPACK_USER_CONFIG/<system>/compilers.yaml is read by Spack to determine what addi-
tional compilers are available on the system. On ARCHER2 we initially populated this file by running the
command:

spack compiler find

Spack does a reasonable job of populating this file with the correct compiler specs as well as appropriate
compiler flags, and even configures the correct modules to load to use the compilers. It is still worth checking
this file carefully, as any error here may require all packages built with that compiler to be rebuilt.

A similar trick can be used to populate $SPACK_USER_CONFIG/packages.yaml, which is read by spack
to determine additional packages that can be used. However,

spack external find

1$SPACK USER CONFIG if not explicitly set, will default to ~/.spack. This may cause issues if you attempt to build packages
on a computer node of ARCHER2 as the default home directory is not mounted.
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only picks up build dependencies (tools like Bison, m4, git and tar), not the modules available on the
system. Care must be taken to add cray-mpich as the MPI provider along with a suitable spec line,
additional modules to load, the prefix path, as well as a tag to mark the package as not buildable by Spack.
The same procedure must be done for the BLAS and LAPACK provider (cray-libsci) and the Python
module, if they are desired as build dependencies, otherwise Spack will build its own copy.

Setting this up may be daunting for a user, but is possible to have a centrally installed instance of Spack
or a centrally managed global Spack configuration (one that is overridden by the user’s configuration, if
desired). Once build configurations have been finalised the Spack settings documented on the Firedrake
wiki[4] could be used as the ARCHER2 global configuration. Up until this point nothing has been Firedrake
specific and is a useful introduction for anybody starting out using Spack on ARCHER2.

The Firedrake spack repository currently holds all of the additional packages currently required to build
Firedrake. This repo works in conjunction with the Spack’s builtin repo, offering additional packages and
modifications of existing packages. Section 2.5 contains some examples.

Users can add the Firedrake Spack repo by cloning the remote repository and adding the repo to Spack’s
configuration:

1 git clone https :// github.com/firedrakeproject/firedrake -spack.git

2 spack repo add firedrake -spack

In order to isolate the packages for the Firedrake installation in the same way that Python’s venv does,
the Spack installation uses Spack environments. This gives a very similar end user experience for anyone
who has previously installed Firedrake using the install script. It also allows for packages to be added in the
environment, with a prefix under the environment directory, giving a developer the same freedom to make
changes to packages, whilst keeping all the core dependencies in one place.

The environment is created, activated and populated with the core packages by executing:

1 spack env create -d ./ firedrake

2 spack env activate -p ./ firedrake

3

4 spack develop py -firedrake@develop

5 spack develop py -pyop2@develop

6 ...

Currently the core packages are added one at a time, and a typical Spack Firedrake environment consits
of:

1 $ ls firedrake/

2 chaco petsc py -codepy py -fiat py -firedrake py -islpy py -petsc4py py -pyop2 py -ufl

3 libsupermesh py-cgen py-coffee py-finat py-genpy py-loopy py-pyadjoint py-tsfc

At this point both the Spack build system and the Firedrake environment are configured and Firedrake can
be installed.

2.5 Upstream changes

PETSc is one of the key dependencies of Firedrake and it is essential for core functionality that PETSc
builds correctly, with all of its own dependencies and links against all libraries necessary for Firedrake to
function. For stability, Firedrake maintains its own fork of PETSc tracking a few commits behind PETSc
main, so it is necessary to create a modified package maintained in the Firedrake Spack repo that points
to this fork. Changing the location of the source code could never be incorporated into the builtin Spack
PETSc package, which necessitated its duplication in our own repository. A key contribution from this eCSE
was the modification of the builtin PETSc package, to allow for inheritance and modification enabling the
package to be subclassed without having to re-implement the install logic. This now allows other projects
to create alternative PETSc installs using the Spack builtin as a parent class. Chaco, Eigen, NetCDF and
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parallel NetCDF have been included as options in the Firedrake PETSc Spack package, since these libraries
need to be linked against for a working installation.

Chaco, a mesh partitioner developed at Sandia, is an upstream package that has not seen active develop-
ment for many years and did not previously have a Spack package2, so this is also included in the Firedrake
package repo.

In section 2.1 it was mentioned that Numpy (and Scipy) need to be linked against the same BLAS and
LAPACK providers as PETSc to allow both to be imported in Python. This eCSE expanded the number
of different BLAS/LAPACK implementations that Numpy could build against as options in Spack. This
enables compatibility with both the AMD Optimizing CPU Libraries and Cray scientific libraries available
on ARCHER2. Additional logic has also been added to the Scipy package to ensure that it too is built
with the same BLAS/LAPACK as Numpy. These changes have been merged into the development branch
of Spack for the benefit of all Spack users.

To allow for the use of different compilers in Spack, modifications had to be made to the PyOP2 package
(which handles the compilation stage of the code generation within Firedrake). Refactoring allows end users
to customise the compiler and compiler flags used with PyOP2 by creating new Python compiler classes, as
well as allowing the default compiler classes to be overridden by environment variables. These environment
variables can be automatically set when Spack loads the Firedrake environment. Now by default PyOP2
will use the same compiler that Spack used to build the rest of the Firedrake dependency tree.

Python packages within a Firedrake environment are installed in “developer mode”, which allows for the
source code in the cloned git repository to be used as if it were installed to Python’s site-packages directory.
This behaviour is not natively supported by Spack, but we have developed an EditablePythonPackage

class in the editable_install package, which allows core dependencies to be installed in developer mode.
In addition to these changes the following is list of new or modified Spack packages that were created

for this work and currently reside in the Firedrake Spack repository:

1 $ ls firedrake -spack/packages

2 chaco py -cgen py -firedrake py -icepack py -petsc4py py -pytools

3 editable_install py -codepy py -folium py -irksome py-pulp py-thetis

4 libspatialindex py-coffee py-genpy py -islpy py -pyadjoint py -tsfc

5 libsupermesh py-femlium py-geojson py-loopy py-pygmsh py-ufl

6 petsc py -fiat py -gmsh -interop py -meshio py -pymbolic py -uptide

7 py-branca py -finat py -gusto py -meshpy py -pyop2 py -vtk

These will be offered to the maintainers of each project for their inclusion into Spack’s builtin repository to
ensure better package maintenance.

2.6 The py-firedrake package

The Spack package for Firedrake supports all the same functionality as the previous Firedrake install script
including installing additional packages, specifying the MPI to use for dependencies and allowing foll cus-
tomisation of PETSc build options. All this functionality fits into the Spack spec “language” for specifying
versions and options for packages. For instance, if running on a local machine where the user wants Spack
to build all dependencies, Firedrake can be configured using the GCC compiler, MPICH and OpenBLAS
using the command:

1 spack add py -firedrake@develop %gcc ^mpich ^openblas

2 spack install

On ARCHER2, Firedrake can be configured with GCC, Cray Python, the Cray Scientific Libraries and
Cray MPICH (if these have been added to the list of external packages) using the command in listing 2.
Furthermore, the Firedrake Spack package includes additional functionality that cannot be added to the
script. One additional feature is using system packages — and more importantly system modules — as
part of a Firedrake build. Another is the ability to specify the compiler for the whole toolchain. When

2At least it didn’t when this project started
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1 spack add py -firedrake@develop \

2 %gcc@10 .2.0 \

3 ^python@3 .9.4.1 \

4 ^cray -mpich@8 .1.9% gcc@10 .2.0 \

5 ^cray -libsci@21 .04.1.1

6 spack install

Listing 2: Spack configuration for ARCHER2 using GCC, Cray Python, Cray MPICH and Cray scientific
libraries

the Firedrake installation script is used packages are not all guaranteed to use the same compiler. Changes
to the PyOP2 package, as noted in section 2.5, make it possible for Spack to set the default compiler for
PyOP2 to use for code generation when the Spack environment is activated.

Extensive instructions are currently held in a working document (currently available on hackmd), which
will be added to the Firedrake wiki[4] and we hope to contribute these instructions and instructions for
using Spack to the ARCHER2 documentation[2] site.

To test the portability of the Spack installer, it has also been successfully tested on several platforms.
These include:

• Tier 2 HPC facility Isambard (XCI ThunderX2)

• HPC facilities at Imperial College

• HPC facilities at UCL

• Numerous end users personal machines, comprising different architectures

An additional configuration is being developed that utilises the NVidia compilers, to maximise performance
on ARM hardware and will no doubt be useful in the future work porting Firedrake to GPUs as part of
code generation’s road to exascale.

We would like to acknowledge the contribution of Connor Ward, a PhD student who helped with the
initial generation of many of the Spack packages used as part of this work.

3 Singularity

In order to support containerisation on ARCHER2, we need to create a Singularity image. For several years
the Firedrake developers have been building several working Docker containers with many different flavours
of Firedrake installation. These include:

• firedrake-env - The build environment, Ubuntu 20.04 with all required system packages, but without
Firedrake.

• firedrake-vanilla - Firedrake with no additional packages or associated applications, which forms
the base image for the remaining flavours.

• firedrake - Firedrake with some additional Firedrake applications bundled (Gusto, Thetis, Icepack,
etc...).

• firedrake-complex - The same as firedrake, but with support for complex numbers.

• firedrake-notebooks - A container with both Firedrake and Jupyter notebooks installed, for running
tutorials.

By using CI automation these Docker images can be kept up to date with every successful build.
Unfortunately, Docker is not a suitable container format for running on HPC as it allows for privilege

escalation. The Apptainer/Singularity3 project aims to perform the same role as Docker, but without the
same security vulnerability so that images may be used on any HPC facility that supports containers.

In order to maintain a single source for the Firedrake container our work has focused on modifying the
Docker container so that it may be converted to a usable Singularity container. Singularity allows images
to be converted using the command in listing 3 (using the firedrake-vanilla container as an example

3Singularity used to be the name of both a closed source and open source project. These projects have diverged and the
open source project is now called Apptainer and the closed source project is called Singularity. The executable is still called
singularity in both cases, so we use this name in the report.
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singularity pull firedrake -vanilla.sif docker :// firedrakeproject/firedrake -vanilla

Listing 3: One step (pull and) conversion from Docker image format to Singulrity image format

throughout). However, this does not work for Firedrake images, since the firedrake virtual environment
is built in the $HOME directory.

We have found that it is possible to convert the Docker image to an Singularity image in a two step
procedure using a sandbox environment to prevent changes to the $HOME environment within the container:

1 singularity build --sandbox ./firedrake -vanilla

docker :// firedrakeproject/firedrake -vanilla

2 singularity build firedrake -vanilla.sif ./firedrake -vanilla

Listing 4: Two step procedure 1. (pull and) build with sandbox from Dockerhub, 2. Build Singulrity image
format

Both of these commands can be executed without administrative privileges, so are still suitable for end users
on ARCHER2. This saves both having to host the Singularity image or the user having to upload the large
image from a personal machine.

The Docker images have been updated to include some additional system packages, such as the Open-
Fabric library, to enable the resultant Singularity image to be compatible with ARCHER2. Any of the
Firedrake Docker images listed above can be converted using listing 4, not just firedrake-vanilla.

When configuring the image for running under MPI, there is a choice of hybrid or bind model. In the
bind model the container has no MPI installation and instead the host system MPI is mounted within
the container (AKA binding) and all packages in the image are linked against this MPI. Such a model is
not suitable for Firedrake as it would require too many incompatible changes to the Docker images used
elsewhere. Building a Singularity image from scratch is also not an option, since this process requires
ARCHER2 to use the Cray’s MPICH and would also need to be performed with administrative permissions
(which we cannot have).

Instead we use the hybrid model, as recommended in the ARCHER2 container course, which involves
using the MPI executable from the host. The application in the container is linked against and uses the
MPI installation within the container which has the ability to communicate with the MPI daemon process
running on the host system.

With the image built we can begin running applications in the Singularity container. Following ARCHER2
documentation[2, 1], we use cray-mpich-abi in place of cray-mpich and set the environment variables
SINGULARITYENV_LD_LIBRARY_PATH and SINGULARITY_BIND appropriately. This enables additional Cray
libraries and hardware specific device libraries to be found by executables inside the container.

Additional environment variables can be set within the container be prepending them with SINGULARITYENV_.
We use this to control the location of the various cache directories, to ensure they are writable, and to locate
the correct compilers inside the container:

1 export SINGULARITYENV_OMP_NUM_THREADS =1

2 export SINGULARITYENV_PYOP2_CACHE_DIR =/tmp/$USER/pyop2
3 export SINGULARITYENV_PYOP2_CC =/home/firedrake/firedrake/bin/mpicc

4 export SINGULARITYENV_PYOP2_CXX =/home/firedrake/firedrake/bin/mpicxx

5 export SINGULARITYENV_FIREDRAKE_TSFC_KERNEL_CACHE_DIR =/tmp/$USER/tsfc

Finally, when running Singularity additional steps must be taken to ensure that the Firedrake script is
visible inside the container. By default Singularity will bind (mount within the container) various directories,
including the host $HOME directory, and execute programs as the host system user (not the container user)
using the mounted $HOME directory inside the container as the working directory. Care must therefore be
taken to additionally bind any directories where scripts reside and where results will be saved, since an
ARCHER2 user’s $HOME directory is not mounted on compute nodes.

In the following example the --home argument binds the current working directory ($PWD) as the $HOME
directory for the container, overriding the default behaviour. Additionally, the current working directory is
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bound to the mount point /home/firedrake/work, using --bind so that scripts can be found when running
in the container and results can be saved. The choice of these mount locations can be changed by the user
to the location of their scripts, results directories and possibly a “home space” located under the /work

directory as needed. Finally, the Python installed in the firedrake user’s home directory is used to execute
a script in the bound directory /home/firedrake/work/.

1 srun --ntasks -per -node 128 \

2 singularity run --bind $PWD:/home/firedrake/work --home $PWD firedrake -vanilla.sif \

3 /home/firedrake/firedrake/bin/python \

4 /home/firedrake/work/myScript.py

Whilst there are a lot of options here, it gives the end user complete control over what locations on the
ARCHER2 system are available for reading and writing by the container. Furthermore, using a container
involves no installation for the user, just configuration.

Figure 2: Strong scaling plot with a comparison of bare metal simulations (solid lines) and containerised
simulations (dashed lines) for two different solvers. The CG solver with AMG incurs a 30–40% overhead
running in a container on all but the 8 node simulation, the matrix free solver with GMG performs better
with an 8–15% overhead on 1–4 nodes.

During multinode performance testing the Singularity container takes longer to execute simulations than
when the same simulations are run on bare metal, as would be expected. From the experiments certain
solvers perform better than others inside the container. Direct solvers seem to perform well and are close
to bare metal performance, but are not scalable so cannot be used for large problems. However, scalable
solvers of interest like multigrid seem to fare worse, although not terribly, as figure 2 illustrates. We postulate
that this is due to way in which hierarchical solvers (like multigrid) are using MPI communicators within
PETSc and it is the overhead of using certain operations in the containerised MPI installation that cause
the slowdown.

Figure 2 shows a comparison between two of the solvers used for performance testing on 1–8 nodes of
ARCHER2. The details of the solvers are not important for this discussion, but the conjugate gradient solver
with algebraic multigrid preconditioning (CG + AMG) runs with a 30-40% overhead inside the container
and a matrix free CG solver with telescoping geometric multigrid preconditioning (Matfree CG + telescoped
GMG) runs with only an 8-15% overhead. On 8 nodes this situation is reversed, but this may be due to
the tuning of the solvers for the specific problem size (notice that there are only 32000 degrees of freedom
per core on 8 nodes in this experiment). For these tests we believe that this is an acceptable overhead, but
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we aim to improve it in the future. It may unfortunately be the case that solvers require slightly different
tuning for a containerised build compared to a bare metal installation.

It is clear from our investigation that internode communication is the biggest issue for the performance
of solvers within containers, single node tests show very little overhead from using the Singularity container.
We have only tried building a Singularity with the OpenFabrics network layer and we may yet see a dif-
ference with UCX network layer, although the configuration of such a container is undocumented. Further
investigations into the best configuration is required, but rebuilding containers with a PETSc built with dif-
ferent options inside is incredibly time consuming. For now Singularity containers provide a zero installation
route to using Firedrake, even if there is a small penalty to simulation performance.

4 Clean up of parallel objects in PETSc

Prior to the start of this eCSE we observed an issue when running Firedrake in parallel. When running on
ARCHER2 (and other HPC facilities) jobs would randomly hang, with no apparent cause. On repeating
the same job, it may then complete with no hang. Fixing the issue involved adding additional functionality
to PETSc, which is tightly coupled to Firedrake and provides sophisticated, programmable solvers[8].

The source of this issue was determined to be Python’s garbage collector. Specifically when running
under MPI, Python objects created using petsc4py are allowed to be cleaned up by the cyclic garbage
collector, causing simulations to deadlock. This happens because petsc4py objects are distributed across
ranks and as such require synchronised destructon, but Python is not MPI aware and calls the garbage
collector at different times on different ranks.

Whilst ARCHER2 isn’t the first platform on which this problem has been observed, the combination
of high core count per job and large number of Python objects created in certain algorithms meant a high
prevalence of the issue during our previous simulations. The problem is very relevant to this eCSE as it
affects both the scalability and robustness of Firedrake. Since the issue only occurs in parallel, and the
chance that one Python instance calls the garbage collector out of turn increases with the number of MPI
ranks used, any HPC platform is vulnerable to this issue. Furthermore, it can result extreme costs for HPC
users as deadlocks do not terminate jobscripts. Instead it will waste all the Compute Units (CUs) assigned
to a particular job and waste a lot of an end users time trying to track down the cause of the deadlock.

The solution we present performs the job of the cyclic garbage collector safely for Single ProgramMultiple
Data (SPMD) programs. This is done in three stages:

1. Creation (Synchronous) At object instantiation the current number of objects associated with the
current communicator is attained and incremented. This creation index is associated with that object
for its lifetime.

2. Delayed destruction (Non-synchronous) At object destruction a reference to the underlying struct
is held and added to a garbage hashmap using the creation index as the key. The memory is not yet
freed as a reference to the struct persists. Since this step is non-synchronous it can safely be called at
any time by Python’s garbage collector.

3. Cleanup (Synchronous) A cleanup routine is periodically called on all ranks within the communicator
to deallocate the memory occupied by the structs present in the garbage hashmap that have been
destroyed on all ranks and in ascending creation index order. Algorithm 1 outlines the procedure used
for this step.

These changes are completely transparent to the end user, when this fix gets merged into PETSc no
changes will need to be made to existing codes. At this point Firedrake scripts will no longer hang in parallel
due to the garbage collection issue, preventing wasted resources when running jobs. By merging this fix into
upstream PETSc, it will benefit all petsc4py users, not just Firedrake users.

Preliminary results indicate that the fix will have little impact on the performance of code after the
fix is merged. Figure 3 shows the time to create 100 distributed objects (bulk time) and the time taken
to clean up the memory from the objects when they have been destroyed (cleanup time). These times are
presented for two different methods, the two plots on the left are indicative of the performance before the fix
on experiments are prone to hang, the plots on the right show the performance with the fix implemented.
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Algorithm 1: Parallel garbage collection function

cleanup(comm)
garbage = getGarbage(comm)
sorted keys = sort(garbage.keys())
intersection = gatherIntersect(comm, sorted keys)
for key in intersection do

object = garbage.get(key)
object.collectiveDestroy()
garbage.remove(key)

end

return

Figure 3: Performance comparison of bulk (object creation time), both top, and cleanup time, both bottom,
for simulations using the broken object cleanup procedure, both left, compared to the newly implemented
parallel safe cleanup, both right. Runs were performed with both cold and warm caches.
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Two lines are shown on each plot, the time to create/destroy the objects with a cold cache (simply labelled
‘time’) and time to create/destroy the objects on a second run with populated Python caches (labelled ‘time
warm’).

The techniques used in this improvement to PETSc/petsc4py will be explored in an upcoming publica-
tion.

A Appendix

A.1 Spindle

Originally we envisioned a launch utility that would handle process distribution (like mpiexec), process
pinning (like likwid-pin) as well as improving dynamically linked library load time (like spindle).

Such a tool would prevent commands such as

1 spindle --x \

2 likwid -pin -N:0 -128\

3 mpiexec -n 1024 -ppn 128 -bind -to \

4 python -B -m memory_profiler\

5 my_script.py -pc_mg_log -log_view :my_script.txt:ascii_flamegraph

We decided against creating a generic runscript as placing all the different options together would serve
no purpose. Such a utility may also cause further issues due to providers for some tools MPI providers
and functionality overlap between different tools (aprun and likwid for instance perform process placement
differently).

Unfortunately, we were unable to get Spindle[11, 7] to work on ARCHER2. Installing via Spack did
not produce a useable program, more system configuration was required. Manually installing threw up
further issues. Firstly, Spindle is not compatible with the version of SLURM installed on ARCHER2. While
the installation can continue and there are suggested workaround flags for SLURM, the workaround is
ineffective and Spindle does not work correctly. Secondly, the configuration of Spindle seems to depend on
certain communication features of the system that may be disabled for security on ARCHER2.

Spindle is an interesting package that we may investigate in the future. We cannot bundle it as a user
installable component of Firedrake, but it may be of interest to the ARCHER2 CSE team as a tool to
improve library loading. Such a tool would need to be provided as a system installation to be truly effective.

An ad hoc alternative to Spindle is outlined in appendix A.2.

A.2 Tarballing

One method that we can use to prevent large jobs thrashing the network filesystem is to create installations
(either a Spack install or script based install) in a directory in /tmp. When the installation is complete the
whole environment can be stored compressed as a single tarball file somewhere under the /work directory.
This modification to the installation is shown in listing 5.

1 ...

2 mkdir -p /tmp/$USER
3 spack env create -d /tmp/$USER/firedrake
4 spack env activate -p /tmp/$USER/firedrake
5 ...

6 spack install --fail -fast 2>&1 | tee $SPACK_ENV/spack -firedrake -install.log
7 tar -czvf /work/PRJ/PRJ/$USER/firedrake.tar.gz /tmp/$USER/firedrake

Listing 5: Modified steps in Spack installation, showing installation under /tmp and tarballing the installation
at the end (other steps elided)

It is advantageous to tarball the environment as this single file can be sent to all compute nodes at
run time (once per node) and then each rank per node can load files from the local filesystem or ramdisk.
This is in contrast to all ranks on all nodes trying to read from the network filesystem, which causes a
bottleneck. On ARCHER2 each node has 128 physical cores, which have to share just 2 network cards. By
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predistributing the environment the load on the network filesystem at initialisation time is reduced by a
factor of 128.

1 source /work/PRJ/PRJ/$USER/spack/share/spack/setup -env.sh
2 srun --ntasks -per -node 1 tar -xzf /work/PRJ/PRJ/$USER/firedrake.tar.gz -C /tmp/$USER
3 spack env activate /tmp/$USER/firedrake -env/gcc
4 python myScript.py

Listing 6: Modified steps in running script under Spack, untarballing the installation before activating the
environment

However, installing in this manner makes modifying the installation cumbersome as the tarball must be
unpacked to /tmp, before any changes can be made to the installation. Once changes are made, it is also
necessary to re-tarball the whole installation, overwriting the original tarball. This is not an ideal solution
for developers or for end users due to the extra work involved to modify and activate the environment. We
are actively seeking an alternative method to replace tarballing the whole environment.
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