

ARCHER2-eCSE03-10 Technical Report

Realising a modular data interface to couple quantum mechanical
calculators with external data-driven workflows

PI: Dr Andrew Logsdail, Cardiff University

Co-Is: Dr Reinhard Maurer (University of Warwick), Prof. Volker Blum (Duke University), Dr
Mariana Rossi (Max Planck Institute for the Structure and Dynamics of Matter), Dr Ben
Hourahine (University of Strathclyde), Prof. Scott Woodley (University College London), Dr
Thomas Keal (STFC Daresbury)

Technical Staff: Dr Pavel V. Stishenko (Cardiff University)

Abstract

The Atomic Simulation Interface (ASI) is a native C-style API that includes functions for the
export and import of data structures that are used in electronic structure calculations and for
classical molecular dynamics simulations. The ASI aims to be a uniform, generic and efficient
interface for connecting various computational chemistry and materials science codes in
multiscale simulation workflows, such as QM/MM, QM/ML, QM/QM. The ASI specifies
functions, data types and calling conventions for export and import of density matrices,
overlap and Hamiltonian matrices, electrostatic potential, atomic coordinates, charges, total
energy and forces. We have implemented the ASI in FHI-aims and DFTB+ codes as
demonstrations of capabilities. An ASI Python wrapper and ASE-complying (Atomic Simulation
Environment) calculator have been written to simplify integrations with other Python codes.
Proof-of-concept codes have been written for electrostatic potential embedding, density
matrix prediction, and Hamiltonian matrix export.

Motivation

Exascale computing power enables the computational chemistry and materials science
communities to conduct high-throughput computational screening of materials using models
that explicitly consider electronic structure of simulated matter [1-3]. Complexity and
diversity of electronic structure calculations, and subsequent analysis algorithms, have
caused development of numerous computer codes tailored to different use cases [4]. As a
consequence, the best algorithms for all problems are not available in all software packages,
and computational scientists aiming to conduct research with the best algorithm
implementations must put significant effort into organising data exchange between different
programs [5]. In the computational chemistry and materials science domain, example cases
include the growing adoption of hierarchical (e.g. QM/MM) approaches, with polarizable
force-fields [6] that demand generic mechanisms to exchange data about electrostatic fields
between software packages, as well as the recent promise offered by employing machine-
learning (ML) methods at the electronic structure level [7-8]. Therefore, a generic and
efficient way to extract electronic structure data, and derived properties, from electronic
structure packages will allow for application in hierarchical modelling and training of ML

models, as well as to employ ML predictors in electronic structure calculations, which will be
of utility for large communities.

Implementation

General design considerations
Taking into account the potential size of data objects, as well as the large-scale application on
HPC infrastructure, we decided to design the ASI in a way that allows minimal compute
overhead with regards to interface implementation. Therefore, the ASI API is specified as a
set of pure C functions with requirements on calling sequence; and no non-standard libraries
are required to implement ASI API or to use codes with it. Although C-style API lacks
expressiveness and means of compile-time error checking, it is undoubtedly the most
portable interface that is crucial for interoperability and wide adoption, which is one of our
overarching ambitions.

Support of distributed calculations
For distributed applications, we have designed the ASI API with ScaLAPACK as the suggested
approach. In this regard, our functions that manipulate large matrices tend to pass data
pointers to BLACS descriptors, along with pointers to matrices, rather than any complete data
objects; these BLACS descriptors are optional, allowing codes with ASI API to also be built
without ScaLAPACK if more appropriate (i.e, intermediate computing facility, and smaller).

Furthermore, electronic structure packages commonly parallelize calculations by discrete
variables, such as k-points and spin channels; calculations for different values of k-points and
spin channels are relatively independent, so such parallelization is efficient and easy to
implement, providing excellent compute benefits. In our design and realisation, the ASI API
provides special functions that return the list of local k-points and spin channel indices. The
implementation of these functions allows client code receiving data to adapt to an already
existing distributed data object.

Callbacks
To avoid unnecessary data copying, the ASI API functions that are designed for exporting of
data provide pointers to internal data structures, letting the caller decide if copying is needed.
It is a common practice in high performance computing to reuse data arrays for storing
computation results; for example, LAPACK has many functions that place output in place of
input arrays. Therefore, it is hard or impossible to guarantee data existence after full
completion of computation, because intermediate data arrays that could be of interest for
external codes can be overwritten during subsequent calculations. In this regard, it is
necessary for our API to provide a means to pause main code execution, and thus allow for
interesting data to be processed by external code (or transferred out). In the ASI approach,
we decided to use the callback approach for this purpose. Callbacks are simple to introduce
in existing codes, which is crucial choice for the ASI API to be widely adopted.

Key ASI API functions
The most important functions implemented in the new ASI API are shown in Table 1,
presenting a general picture of the API capabilities. For complete ASI API specification, please
see the ASI API Specification in the project’s website (https://gitlab.com/pvst/asi).

Purpose: Control flow
ASI_init() Initialize calculations
ASI_run() Do single point calculation. Can be called

multiple times
ASI_finalize() Finalize calculations, free resources
Purpose: Classical data object transfer (specific functions with limited dimensionality)
ASI_set_atom_coords() Set atomic coordinates
ASI_energy() Get total energy
ASI_forces() Get forces acting on atoms
ASI_atomic_charges() Get atomic charges
Electrostatic potential management (higher dimensionality objects)
ASI_calc_esp() Get electrostatic potential and its gradient

in arbitrary points
ASI_set_external_potential()
ASI_register_external_potential()

Set electrostatic potential and its gradient
in arbitrary points

Electronic structure matrix management (higher dimensionality objects)
ASI_register_dm_init_callback() Initialize SCF loop via density matrix
ASI_register_dm_callback() Get density matrix on each SCF iteration
ASI_register_overlap_callback() Get overlap matrix
ASI_register_hamiltonian_callback() Get Hamiltonian matrix

Table 1. Key functions of the ASI API. For full list see ASI API Specification: https://gitlab.com/pvst/asi.

Peculiarities of implementations
In realising the application interfaces for the ASI API into existing packages, and thus
demonstrating functionality, we discovered that uniform implementations of the ASI API
where not fully possible in DFTB+ and FHI-aims. In particular, intrinsic differences of
algorithms in these codes, and willingness to minimize existing code changes, led to a few
implementation-specific peculiarities that are documented here:

The DFTB+ software package was an ideal environment for test implementation, as it has a
maintained C-style API with functions similar to ASI API functionality. Therefore,
implementation has meant we have extended the already existing DFTB+ API to include
missing functionality that supports export of large matrices. In this regard, the ASI API
implementation is a separate wrapping library that essentially forwards ASI API calls to DFTB+
API.

The FHI-aims software package is quite contrasting, having only rudimentary support of
functionality in the library form (but significant application potential). The ASI API was natively
implemented in FHI-aims and, moreover, initialization code within the software package was
refactored to make it more modular and extendable, i.e. delivering benefit of long-term
sustainability to the FHI-aims community.

As a further nuance of the algorithmic differences between DFTB+ and FHI-aims, the
ASI_register_dm_init_callback() is not implemented for DFTB+ as density matrix

initialization of an SCF loop is meaningless for DFTB calculations, whereas it is highly beneficial
in FHI-aims (as demonstrated below).

Interoperability with Python
To provide interoperability with the plethora of Python libraries available to computational
chemistry and physics communities, two modules have been developed that allow interfacing
with the ASI API. The primary pyasi module provides direct access to ASI API functions
wrapping C arrays into NumPy counterparts. In addition, another module asecalc provides an
ASI_ASE_calculator class that implements an instance of the ASE (Atomic Simulation
Environment) Calculator interface, allowing subsequent use in a wide-range of computational
chemistry packages. Both are distributed via the project repository.

Use cases
The ASI API is envisaged to have a wide range of applications, and here we demonstrate
potential in three use cases that have been considered for testing purposes: (i) electrostatic
potential embedding; (ii) density matrix initialization; (iii) and export of matrices related with
DFT calculation.

Electrostatic potential embedding
Electrostatic embedding is an established QM/MM technique of approximation of
interactions between subsystems. The ASI API supports the transfer for electrostatic
information by providing functions that allow export and import of both the electrostatic
potential and gradient (i.e. field) across arbitrary points. In the project repository there are
test cases (tests/testcases/test_esp_sc.py.aims and tests/testcases/test_esp_sc.py.aims)
for self-consistent calculation of electrostatic interactions between two water molecules.
Note, that both FHI-aims and DFTB+ tests use the same Python code
(tests/python/test_sc.py), which we believe helps to underline the generality of the ASI API.

Density matrix initialising
The efficiency that an electronic structure calculation can achieve is strictly limited by the
matrix diagonalisation operations; however, if the quantity of these operations can be
reduced, then significant compute gains can be made. Thus, the quality of the initial guess for
the electronic structure orbital coefficients (stored in the density matrix) can reduce the
quantity of self-consistent field (SCF) iterations and computation time, as well as reducing the
number of non-converging simulations [9]. The ASI API provides a simple and efficient way to
feed predicted density matrix in to the SCF loop, and this paves the way to exploration of
various algorithms for density matrix prediction. As an exemplar case, and considering that
development of such density matrix predictions was out of scope of this project, we are
encouraged by preliminary experiments with the SchNOrb library [10] that demonstrate a
reduction in the number of SCF steps by more than 70% for uracil and malondialdehyde
molecules.
The exemplar python script in the repository uses precomputed ground-state density matrix
as a mock-up of a ML-based density-matrix predictor (tests/python/test_dm_init.py).

Export of Hamiltonian, overlap, and density matrices
Our final example use case is the export of larger matrices related with electronic structure
calculations, which is common for further integration with external software packages and
post-processing. Example usage of these matrices, which can be highly memory consuming if
written to file, are machine learning applications or electron transport calculations. The
exemplar python script is in the repository (tests/python/test_expdmhs.py) and proves facile
realisation.

Conclusions and future work
Unification of access to internal data structures of DFT codes is a challenge due to the
monolithic nature of existing software packages, developed through significant coding
endeavour; however, this modularisation and accessibility is necessary for employing
machine learning advancements and for future development of multiscale simulation
methods on new HPC infrastructure. Here, we have realised such a modular approach and
demonstrated this with interfacing to two popular electronic structure packages that are
commonly used on ARCHER2 and other HPC facilities. A benefit of implementing our universal
API is the possibility to separate some auxiliary functionality from computational codebase in
these packages, with long-term benefit for these communities; for example, charge
partitioning, data formatting and parsing, electron transport calculations can be implemented
as separate libraries relying on ASI API. We believe that the work realised here provides the
foundation for an exciting new opportunity in accelerated atomistic modelling.

This work was funded under the embedded CSE programme of the ARCHER2 UK National
Supercomputing Service (http://www.archer2.ac.uk).

References

(1) Torelli D, Moustafa H, Jacobsen KW, Olsen T. High-throughput computational
screening for two-dimensional magnetic materials based on experimental databases
of three-dimensional compounds. npj Comput Mater. 2020 Dec;6(1):158.

(2) Sarikurt S, Kocabaş T, Sevik C. High-throughput computational screening of 2D
materials for thermoelectrics. J Mater Chem A. 2020;8(37):19674-83.

(3) Luo S, Li T, Wang X, Faizan M, Zhang L. High-throughput computational materials
screening and discovery of optoelectronic semiconductors. WIREs Comput Mol Sci.
2021 Jan;11(1):e1489.

(4) Sherrill CD, Manolopoulos DE, Martínez TJ, Michaelides A. Electronic structure
software. J Chem Phys. 2020 Aug 21;153(7):070401.

(5) Borini S, Monari A, Rossi E, Tajti A, Angeli C, Bendazzoli GL, et al. FORTRAN Interface
for Code Interoperability in Quantum Chemistry:  The Q5Cost Library. J Chem Inf
Model. 2007 May 1;47(3):1271-7.

(6) Bondanza M, Nottoli M, Cupellini L, Lipparini F, Mennucci B. Polarizable embedding
QM/MM: the future gold standard for complex (bio)systems?. Phys Chem Chem Phys.
2020;22(26):14433-48.

(7) Westermayr J, Gastegger M, Schütt KT, Maurer RJ. Perspective on integrating machine
learning into computational chemistry and materials science. J Chem Phys. 2021 Jun
21;154(23):230903.

(8) Chandrasekaran A, Kamal D, Batra R, Kim C, Chen L, Ramprasad R. Solving the
electronic structure problem with machine learning. npj Comput Mater. 2019
Dec;5(1):22.

(9) Lehtola S. Assessment of Initial Guesses for Self-Consistent Field Calculations.
Superposition of Atomic Potentials: Simple yet Efficient. J Chem Theory Comput. 2019
Mar 12;15(3):1593-604.

(10) Schütt KT, Gastegger M, Tkatchenko A, Müller K, Maurer RJ. Unifying machine
learning and quantum chemistry with a deep neural network for molecular
wavefunctions. Nat Commun. 2019 Dec;10(1):5024.

