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Abstract 
 
The Atomic Simulation Interface (ASI) is a native C-style API that includes functions for the 
export and import of data structures that are used in electronic structure calculations and for 
classical molecular dynamics simulations. The ASI aims to be a uniform, generic and efficient 
interface for connecting various computational chemistry and materials science codes in 
multiscale simulation workflows, such as QM/MM, QM/ML, QM/QM. The ASI specifies 
functions, data types and calling conventions for export and import of density matrices, 
overlap and Hamiltonian matrices, electrostatic potential, atomic coordinates, charges, total 
energy and forces. We have implemented the ASI in FHI-aims and DFTB+ codes as 
demonstrations of capabilities. An ASI Python wrapper and ASE-complying (Atomic Simulation 
Environment) calculator have been written to simplify integrations with other Python codes. 
Proof-of-concept codes have been written for electrostatic potential embedding, density 
matrix prediction, and Hamiltonian matrix export. 
 
Motivation 
 
Exascale computing power enables the computational chemistry and materials science 
communities to conduct high-throughput computational screening of materials using models 
that explicitly consider electronic structure of simulated matter [1-3]. Complexity and 
diversity of electronic structure calculations, and subsequent analysis algorithms, have 
caused development of numerous computer codes tailored to different use cases [4]. As a 
consequence, the best algorithms for all problems are not available in all software packages, 
and computational scientists aiming to conduct research with the best algorithm 
implementations must put significant effort into organising data exchange between different 
programs [5]. In the computational chemistry and materials science domain, example cases 
include the growing adoption of hierarchical (e.g. QM/MM) approaches, with polarizable 
force-fields [6] that demand generic mechanisms to exchange data about electrostatic fields 
between software packages, as well as the recent promise offered by employing machine-
learning (ML) methods at the electronic structure level [7-8]. Therefore, a generic and 
efficient way to extract electronic structure data, and derived properties, from electronic 
structure packages will allow for application in hierarchical modelling and training of ML 



models, as well as to employ ML predictors in electronic structure calculations, which will be 
of utility for large communities. 
 
Implementation 
 
General design considerations 
Taking into account the potential size of data objects, as well as the large-scale application on 
HPC infrastructure, we decided to design the ASI in a way that allows minimal compute 
overhead with regards to interface implementation. Therefore, the ASI API is specified as a 
set of pure C functions with requirements on calling sequence; and no non-standard libraries 
are required to implement ASI API or to use codes with it. Although C-style API lacks 
expressiveness and means of compile-time error checking, it is undoubtedly the most 
portable interface that is crucial for interoperability and wide adoption, which is one of our 
overarching ambitions. 
 
Support of distributed calculations 
For distributed applications, we have designed the ASI API with ScaLAPACK as the suggested 
approach. In this regard, our functions that manipulate large matrices tend to pass data 
pointers to BLACS descriptors, along with pointers to matrices, rather than any complete data 
objects; these BLACS descriptors are optional, allowing codes with ASI API to also be built 
without ScaLAPACK if more appropriate (i.e, intermediate computing facility, and smaller). 
 
Furthermore, electronic structure packages commonly parallelize calculations by discrete 
variables, such as k-points and spin channels; calculations for different values of k-points and 
spin channels are relatively independent, so such parallelization is efficient and easy to 
implement, providing excellent compute benefits. In our design and realisation, the ASI API 
provides special functions that return the list of local k-points and spin channel indices. The 
implementation of these functions allows client code receiving data to adapt to an already 
existing distributed data object. 
 
Callbacks 
To avoid unnecessary data copying, the ASI API functions that are designed for exporting of 
data provide pointers to internal data structures, letting the caller decide if copying is needed. 
It is a common practice in high performance computing to reuse data arrays for storing 
computation results; for example, LAPACK has many functions that place output in place of 
input arrays. Therefore, it is hard or impossible to guarantee data existence after full 
completion of computation, because intermediate data arrays that could be of interest for 
external codes can be overwritten during subsequent calculations. In this regard, it is 
necessary for our API to provide a means to pause main code execution, and thus allow for 
interesting data to be processed by external code (or transferred out). In the ASI approach, 
we decided to use the callback approach for this purpose. Callbacks are simple to introduce 
in existing codes, which is crucial choice for the ASI API to be widely adopted. 
 
Key ASI API functions 
The most important functions implemented in the new ASI API are shown in Table 1, 
presenting a general picture of the API capabilities. For complete ASI API specification, please 
see the ASI API Specification in the project’s website ( https://gitlab.com/pvst/asi ). 



 
Purpose: Control flow 
ASI_init() Initialize calculations 
ASI_run() Do single point calculation. Can be called 

multiple times 
ASI_finalize() Finalize calculations, free resources 
Purpose: Classical data object transfer (specific functions with limited dimensionality) 
ASI_set_atom_coords() Set atomic coordinates 
ASI_energy() Get total energy 
ASI_forces() Get forces acting on atoms 
ASI_atomic_charges() Get atomic charges 
Electrostatic potential management (higher dimensionality objects) 
ASI_calc_esp() Get electrostatic potential and its gradient 

in arbitrary points 
ASI_set_external_potential() 
ASI_register_external_potential() 

Set electrostatic potential and its gradient 
in arbitrary points 

Electronic structure matrix management (higher dimensionality objects) 
ASI_register_dm_init_callback() Initialize SCF loop via density matrix 
ASI_register_dm_callback() Get density matrix on each SCF iteration 
ASI_register_overlap_callback() Get overlap matrix 
ASI_register_hamiltonian_callback() Get Hamiltonian matrix 

Table 1. Key functions of the ASI API. For full list see ASI API Specification: https://gitlab.com/pvst/asi. 
 
Peculiarities of implementations 
In realising the application interfaces for the ASI API into existing packages, and thus 
demonstrating functionality, we discovered that uniform implementations of the ASI API 
where not fully possible in DFTB+ and FHI-aims. In particular, intrinsic differences of 
algorithms in these codes, and willingness to minimize existing code changes, led to a few 
implementation-specific peculiarities that are documented here: 
 
The DFTB+ software package was an ideal environment for test implementation, as it has a 
maintained C-style API with functions similar to ASI API functionality. Therefore, 
implementation has meant we have extended the already existing DFTB+ API to include 
missing functionality that supports export of large matrices. In this regard, the ASI API 
implementation is a separate wrapping library that essentially forwards ASI API calls to DFTB+ 
API. 
 
The FHI-aims software package is quite contrasting, having only rudimentary support of 
functionality in the library form (but significant application potential). The ASI API was natively 
implemented in FHI-aims and, moreover, initialization code within the software package was 
refactored to make it more modular and extendable, i.e. delivering benefit of long-term 
sustainability to the FHI-aims community.  
 
As a further nuance of the algorithmic differences between DFTB+ and FHI-aims, the 
ASI_register_dm_init_callback() is not implemented for DFTB+ as density matrix 



initialization of an SCF loop is meaningless for DFTB calculations, whereas it is highly beneficial 
in FHI-aims (as demonstrated below). 
 
Interoperability with Python 
To provide interoperability with the plethora of Python libraries available to computational 
chemistry and physics communities, two modules have been developed that allow interfacing 
with the ASI API. The primary pyasi module provides direct access to ASI API functions 
wrapping C arrays into NumPy counterparts. In addition, another module asecalc provides an 
ASI_ASE_calculator class that implements an instance of the ASE (Atomic Simulation 
Environment) Calculator interface, allowing subsequent use in a wide-range of computational 
chemistry packages. Both are distributed via the project repository. 
 
Use cases 
The ASI API is envisaged to have a wide range of applications, and here we demonstrate 
potential in three use cases that have been considered for testing purposes: (i) electrostatic 
potential embedding; (ii) density matrix initialization; (iii) and export of matrices related with 
DFT calculation. 
 
Electrostatic potential embedding 
Electrostatic embedding is an established QM/MM technique of approximation of 
interactions between subsystems. The ASI API supports the transfer for electrostatic 
information by providing functions that allow export and import of both the electrostatic 
potential and gradient (i.e. field) across arbitrary points. In the project repository there are 
test cases (tests/testcases/test_esp_sc.py.aims and tests/testcases/test_esp_sc.py.aims) 
for self-consistent calculation of electrostatic interactions between two water molecules. 
Note, that both FHI-aims and DFTB+ tests use the same Python code 
(tests/python/test_sc.py), which we believe helps to underline the generality of the ASI API. 
 
Density matrix initialising 
The efficiency that an electronic structure calculation can achieve is strictly limited by the 
matrix diagonalisation operations; however, if the quantity of these operations can be 
reduced, then significant compute gains can be made. Thus, the quality of the initial guess for 
the electronic structure orbital coefficients (stored in the density matrix) can reduce the 
quantity of self-consistent field (SCF) iterations and computation time, as well as reducing the 
number of non-converging simulations [9]. The ASI API provides a simple and efficient way to 
feed predicted density matrix in to the SCF loop, and this paves the way to exploration of 
various algorithms for density matrix prediction. As an exemplar case, and considering that 
development of such density matrix predictions was out of scope of this project, we are 
encouraged by preliminary experiments with the SchNOrb library [10] that demonstrate a 
reduction in the number of SCF steps by more than 70% for uracil and malondialdehyde 
molecules.   
The exemplar python script in the repository uses precomputed ground-state density matrix 
as a mock-up of a ML-based density-matrix predictor (tests/python/test_dm_init.py). 
  



 
 
Export of Hamiltonian, overlap, and density matrices 
Our final example use case is the export of larger matrices related with electronic structure 
calculations, which is common for further integration with external software packages and 
post-processing. Example usage of these matrices, which can be highly memory consuming if 
written to file, are machine learning applications or electron transport calculations. The 
exemplar python script is in the repository (tests/python/test_expdmhs.py) and proves facile 
realisation. 
 
Conclusions and future work 
Unification of access to internal data structures of DFT codes is a challenge due to the 
monolithic nature of existing software packages, developed through significant coding 
endeavour; however, this modularisation and accessibility is necessary for employing 
machine learning advancements and for future development of multiscale simulation 
methods on new HPC infrastructure. Here, we have realised such a modular approach and 
demonstrated this with interfacing to two popular electronic structure packages that are 
commonly used on ARCHER2 and other HPC facilities. A benefit of implementing our universal 
API is the possibility to separate some auxiliary functionality from computational codebase in 
these packages, with long-term benefit for these communities; for example, charge 
partitioning, data formatting and parsing, electron transport calculations can be implemented 
as separate libraries relying on ASI API. We believe that the work realised here provides the 
foundation for an exciting new opportunity in accelerated atomistic modelling. 
 
This work was funded under the embedded CSE programme of the ARCHER2 UK National 
Supercomputing Service (http://www.archer2.ac.uk). 
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