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Background 

The ONETEP Linear-Scaling Density Functional Theory (LSDFT) package [1,2] is a fully-fea-
tured ab initio electronic structure package suited to large-scale atomistic simulations of 
systems such as nanomaterials, crystalline interfaces, and biological materials. It has been 
developed over the last 15 years by a group of academics, the ONETEP Developers Group 
(ODG), based at leading UK universities including Warwick, Imperial, Cambridge and South-
ampton. It has a strong user community both in academia and industry, being made availa-
ble both via a free academic license to UK academics, a low-cost license to other academics, 
and via DS Biovia’s Materials Studio package. The parallel scaling in the early days of 
ARCHER2, obtained by initial measurements utilising hybrid MPI/OpenMP parallelism, 
demonstrated that while the code exhibited what constituted respectable scaling on 
ARCHER, it was vital parallel algorithms were redeveloped to run efficiently on ARCHER2, 
and to take advantage of the large capacity of individual nodes with 128 cores. 

Figure 1 - Schematic of the density extraction and deposition routines which are used in 
converting whole-cell data to thread-local FFTbox grid data. 

This proposal aimed to provide a dramatic upgrade to the parallel scaling of the ONETEP 
Theory code, when run on state-of-the-art parallel computing environments such as 
ARCHER2. Large nodes make novel demands of the parallel algorithms, exposing algorithmic 
issues that were not previously been problematic. Work done in the past, particularly 
around the time of first use on the ARCHER supercomputer [3,4], resulted in parallel scaling 
ONETEP that is, at first, reasonably good with total core count: a nearly-perfect scaling re-
gime exists for a large (1000+ atom) job on up to around 1000 cores. However, beyond that, 
parallel efficiency began to drop rapidly, and we aimed to address this via work packages on 
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whole-cell grid (see Figure 1) and sparse matrix routines respectively. A further work pack-
age involved code sustainability and benchmarking activities including documenting best 
practice when running at very large scale with hybrid MPI/OpenMP parallelism. 

As this technical report describes, while all the objectives relating to code implementation 
and dissemination were achieved, the parallel performance gains of the implemented ap-
proaches were not as high as might have been hoped, because of technical limitations of the 
One-Sided communications routines within the available MPI libraries on ARCHER2 and 
other available systems. 

Development work was undertaken within a fork of the ONETEP code by Chris Brady and 
Heather Ratcliff. Three sections of ONETEP have had their communication approaches 
supplemented by MPI RDMA calls. 

Density Deposition and Extraction 

In this part of ONETEP quantities are defined on hexahedral mesh subdomains of the 
hexahedral mesh global domain. They are then either deposited (value is accumulated from 
the subdomains onto the global domain) or extracted (value on the global domain is copied 
onto the subdomains). The global domain is decomposed over all of the MPI ranks that 
ONETEP is running on but each subdomain is held entirely on a single rank. The subdomains 
that each rank holds are not related to the section of the global domain that the rank holds. 
This is show diagrammatically in Figure 2. 

Figure 2 - 2D analogue of the global 
domains and subdomains in ONETEP. 
Colours indicate the rank that owns a 
part of the global domain or a given 
subdomain 

In general remote accumulation to 
many destinations is needed for 
deposition and remote acquisition of 
data from multiple sources is needed 
for extraction. In deposition there is the 
further complication that each 
subdomain is calculated before 
deposition in a separate thread and the 
MPI communication is then run inside 
an OpenMP critical section In the 
existing approach to deposition in 
ONETEP a subdomain is prepared on 
each rank and then MPI_Alltoall is 

called so that the overlap of each selected subdomain with each other rank is known. Each 
rank then exchanges the relevant overlapping information with the other ranks using sends 
and receives, except in the case of subdomains that are located on the local part of the 
domain. The final accumulation of the result is by local addition. Extraction is the same basic 
algorithm but the final data is simply stored to the subdomain. Note that in this algorithm all 
of the information needed to calculate the overlap of the subdomain and each other rank’s 
part of the domain is held on the processor that holds the subdomain. Since ONETEP has to 
put all MPI calls into OpenMP critical sections the requirement for synchronisation between 



all MPI ranks causes thread level synchronisation across the entire job which limits scaling 
when using many threads and many MPI ranks. Using MPI RDMA calls eliminates this 
effective synchronisation between threads since each MPI rank is now able to act entirely 
independently of the others until all subdomains have been either deposited from or 
extracted to. The simplest approach to implementing MPI RMDA for both deposition and 
extraction creates an MPI window over the entire domain and then using MPI_Accumulate 
(for deposition) or MPI_Get (for extraction) to actually transfer the data. In the case of 
deposition there is a requirement that the source buffer must be available for reuse after 
the call to MPI_Accumulate. This means that either the access EPOCH must be started and 
ended immediately before and after the call to MPI_Accumulate or it must be valid to call 
MPI_Win_flush_local on the window after the call to MPI_Accumulate. 

Both of these imply very strongly that passive target synchronisation must be used. While 
there are fewer restrictions on extraction the current implementation shares code between 
extraction and deposition and retaining this approach was simpler. Two approaches to 
implementing MPI RDMA were tested. In the first approach MPI_Win_lock_all was called 
immediately after the window was created and MPI_Win_unlock_all was called just before 
the window was freed. Immediately after the call to MPI_Accumulate, MPI_Win_flush_local 
was called to allow reuse of the source buffer. In the second approach MPI_Win_lock and 
MPI_Win_unlock are called immediately before and after the call to MPI_Accumulate or 
MPI_Get specifically for the target rank. After testing the first approach was rejected since it 
caused a substantial increase in the memory required which seemed to be due to the MPI 
layer choosing to deal with the call to MPI_Win_flush_local by copying the source buffer to 
MPI_Accumulate to a temporary buffer. 

The second approach works as expected and produced initial evidence of an increase in 
scaling efficiency for small systems – see Figure 3. However, absolute times for the RDMA 
approach were slower than for the conventional approach. It can be hoped this may 
improve with future MPI implementations and there is still scope for improvement within 
the current approach. 

Figure 3 - Scaling of 
tests of the runtime 
associated with 
density 
extract/deposit 
operations 

  



Sharing basis functions 

The second part of ONETEP that was modified to use MPI RDMA was the section that deals 
with sharing basis functions across the processors. This section of ONETEP uses an 
asynchronous request response system overlapping communication with compute. The 
processor that wants a given basis function sends a request for that basis function 
asynchronously. The processor that has that basis function receives the request 
asynchronously and then asynchronously sends the response to the requesting processor 
which in turn asynchronously receives the returned basis function. The overlap of compute 
and communication is already written so this maps naturally onto MPI RDMA. Internal 
changes to the layout of memory were made so that all of the basis functions on a given 
MPI rank were stored contiguously but otherwise the changes were simple. An MPI window 
is created when the calculation involving the basis functions starts and also locked over all 
ranks at the same time and information about how the various basis functions are laid out 
across ranks is exchanged. The phases of data exchange in the existing ONETEP code are 
then followed but simplified. Where in the original code a request is made to a remote 
processor for a given basis function this is replaced with a call to MPI_Get, the intermediate 
step of responding to remote requests disappears since this is now handled by the MPI 
RDMA implementation and the step of responding to the asynchronous receive of the 
response becomes an MPI_Win_flush_local. Performance tests on this code as shown in 
Figure 4 suggests that it performs similarly but slightly better than the existing two sided 
implementation, but there is scope for more performance improvements as the MPI RDMA 
system matures. 

 
Figure 4 - Scaling of runtime associated with basis function comms operations on 16 to 128 
MPI ranks. Performance of both approaches is very similar. 

Final tests on total runtime 

For acceptance testing of the changes made during this project, a set of realistic timings 
tests were performed on full-scale runs on a very large model of an Amyloid fibril, 
comprising 13696 atoms. These are shown in Figure 5 and demonstrate that the total time 



in the revamped code achieved is comparable to the original code, without demonstrating 
significant speedup when applied at large scale. Scaling benefits of the new algorithms do 
not seem to transfer over to large-scale execution of the new code. 

 
Figure 5 - Final runtime before and after implementation of RDMA operations under two 
combinations of OpenMP and MPI parallelism (16 threads x 8 MPI tasks and 8 threads x 16 
MPI tasks), on 8-32 nodes of ARCHER2. 

Conclusions 
The work in this project successfully implemented “one-sided” RDMA operations with the 
goal of accelerating the scaling with MPI process count of some of the more challenging MPI 
communications routines in the ONETEP code. All the technical goals relating to 
implementation of the approach were achieved, though the performance of the resulting 
routines was no better than the original code. All of the objectives relating to making the 
code more useful to users through improved documentation, and ensuring automated 
recurrent testing were achieved, and the project fed well into further developments as part 
of the Software for Research Communities EPSRC project that took parallel scaling 
development in a different direction including developments aimed at porting to GPUs. This 
subsequent work has made great progress on optimising the same basic operations and 



improving overall speed to the degree envisaged this eCSE project, but by a different 
approach (see, for example fig 21 at ref [5]). 
This work was funded under the embedded CSE programme of the ARCHER2 UK National 
Supercomputing Service (http://www.archer2.ac.uk).  
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