

ARCHER2-eCSE02-11 eCSE Technical Report

Optimising	BOUT++	MPI+OpenMP	hybrid	performance	by	refactoring	
compute	kernels	
	
Weronika	Filinger	(EPCC,	The	University	of	Edinburgh),		Joseph	Parker	(United	Kingdom	Atomic	
Energy	Authority),		David	Dickinson	(University	of	York),	Ben	Dudson	(Lawrence	Livermore	
National	Laboratory),		and	Peter	A	Hill	(University	of	York).	
	
Keywords:	MPI	+	OpenMP,	hybrid	parallelisation,	BOUT++	performance,	ARCHER2,	eCSE			

Abstract		

The	goal	of	 this	eCSE	project	was	 to	 investigate	 the	performance	of	 the	hybrid	
MPI+OpenMP	 implementation	 of	 BOUT++	 on	ARCHER2,	 improve	 its	 scaling	 to	 higher	
processor	counts,	and	start	refactoring	the	code	so	that	there	is	only	one	large	loop	kernel	
per	timestep.	Although	the	code	is	parallelised	with	both	MPI	and	OpenMP,	the	addition	
of	OpenMP	initially	didn’t	improve	the	scalability	of	the	code	significantly.	The	first	stage	
of	 the	 project	 was	 to	 investigate	 this	 behaviour	 and	 find	 the	 configuration	 of	 MPI	
processes	and	OpenMP	threads	that	produces	the	best	performance.	The	second	part	of	
the	 project	 was	 focused	 on	 investigating	 the	 performance	 improvements	 due	 to	 the	
refactoring	of	the	code,	which	used	RAJA	to	both	move	the	main	parallel	loop	to	a	higher	
level	 in	 the	 code	 structure	 and	 improve	 the	 portability	 of	 the	 code.	 RAJA	 is	 a	
parallelization	abstraction	layer	that	allows	the	same	source	code	to	be	executed	on	GPUs	
or	with	OpenMP	on	CPUs.	This	investigation	studied	the	CPU	version,	which	essentially	
meant	applying	OpenMP	to	the	main	loop	kernel.	The	actual	code	refactoring	wasn’t	part	
of	this	project;	however,	the	work	carried	out	in	this	project	evaluated	the	performance	
gains	resulting	from	it,	including	improved	scaling	of	the	hybrid	parallelisation	strategy.			

BOUT++	code		
	

BOUT++2	 is	 a	 C++	 framework	 for	 writing	 fluid	 and	 plasma	 simulations	 in	
curvilinear	 geometry.	 It	 is	 intended	 to	 be	 quite	modular,	with	 a	 variety	 of	 numerical	
methods	and	time-integration	solvers	available.	BOUT++	is	primarily	designed	and	tested	
with	reduced	plasma	fluid	models	in	mind,	but	it	can	evolve	any	number	of	equations,	
with	equations	appearing	in	a	readable	form.	The	user-specified	equations	are	separated	
from	 the	 implementations	 of	 differential	 geometry,	 parallel	 communications	 or	 I/O	
operations.	BOUT++	is	organised	into	classes	and	groups	of	functions	which	operate	on	
them.	 	 It	 is	 not	 purely	 object-oriented,	 but	 takes	 advantage	 of	many	 of	 C++’s	 object-
oriented	features.	Macros	are	used	extensively	in	the	code,	including	the	OpenMP	regions.			
	
Data	Structures	and	Parallelisation	Strategy		
	

For	execution	on	CPU	systems,	BOUT++	uses	MPI	to	implement	two-dimensional	
domain	decomposition	in	the	X	and	Y	directions.	The	grid	is	divided	into	domains	closest	
to	square	while	ensuring	the	domains	on	every	processor	have	the	same	size	and	shape	

2 BOUT++ documentation - https://boutproject.github.io/

and	 the	 branch	 cuts	 (mostly	 at	 X-points)	 are	 on	 processor	 boundaries.	 The	
communication	between	different	processors	is	done	primarily	through	the	exchange	of	
guard	cells	using	the	mesh	communication	functions	i.e.	the	MPI	functions	are	embedded	
into	 the	 mesh	 functions	 (e.g.	 mesh::communicate(),	 mesh::send(),	 mesh::wait()).	 The	
restrictions	on	the	simulation	domain	require	the	equilibrium	to	be	axisymmetric	(in	the	
Z	coordinate),	making	it	impossible	to	use	MPI	parallelisation	in	the	Z	direction.	Instead,	
OpenMP	is	used	in	a	large	number	of	places	to	parallelise	the	z	direction.	The	OpenMP	
pragmas	are	embedded	inside	the	BOUT_FOR	macros,	which	replace	the	for-loops.		

These	 macros	 all	 have	 the	 same	 basic	 form:	 an	 outer	 loop	 over	 blocks	 of	
contiguous	indices,	and	an	inner	loop	over	the	indices	themselves	e.g.	BOUT_FOR(index,	
region).	This	allows	the	outer	loop	to	be	parallelised	with	OpenMP	while	the	inner	loop	
can	be	vectorised	with	 the	CPU’s	native	SIMD	 instructions.	Alternative	 forms	are	 also	
provided	for	loops	that	must	be	done	serially,	or	require	more	control	over	the	OpenMP	
directives	 used.	 The	 macros	 are:	 BOUT_FOR	 (OpenMP-aware),	 BOUT_FOR_SERIAL,	
BOUT_FOR_INNER	 (for	 use	 on	 loops	 inside	 OpenMP	 parallel	 regions)	 and	
BOUT_FOR_OMP	(takes	arbitrary	OpenMP	directives	as	an	extra	argument).		

The	Region	class	is	defined	to	specify	a	set	of	indices	which	can	be	iterated	over,	
as	well	as	the	begin	and	end	methods	for	range-based	loops.	These	indices	can	either	be	
used	directly,	or	blocks	of	contiguous	indices	may	be	used	instead	(used	in	the	OpenMP	
regions).	There	 are	 two	main	data	 types	used	 in	BOUT++:	 Field2D	and	Field3D.	They	
provide	 a	 straightforward	 way	 to	 manipulate	 data	 by	 taking	 care	 of	 all	 memory	
management	and	looping	over	grid-points	in	algebraic	expressions.	Two	optimisations	
used	 in	 the	 data	 objects	 to	 speed	 up	 code	 execution	 are	 memory	 recycling,	 which	
eliminates	 allocation	 and	 freeing	 of	 memory;	 and	 copy-on-change,	 which	 minimises	
unnecessary	copying	of	data.	

This	code	structure	adds	an	additional	level	of	abstraction,	making	it	easier	for	the	
user	to	implement	their	model	without	worrying	too	much	about	the	underlying	details.	
At	the	same	time,	this	makes	the	code	a	lot	harder	to	profile	and	to	optimise	for	parallel	
performance.	The	hybrid	MPI+OpenMP	parallelisation	strategy,	although	providing	high	
parallel	coverage,	doesn’t	perform	very	well	compared	to	MPI	only	parallelization.	One	
of	 the	 goals	 of	 this	 project	 was	 to	 investigate	 the	 reason	 behind	 that	 behaviour	 and	
suggest	possible	improvements.	
	
Case	studies	
	

Two	simple	models	have	been	used	as	case	studies	in	this	project.	The	first	one,	
elm-pb,	models	edge	localised	modes	(ELMs),	which	are	instabilities	driven	by	pressure	
gradients	and	currently	at	the	edge	of	high	performance	tokamak	plasmas.	They	result	in	
repetitive	bursts	which	could	result	in	large	heat	loads	on	the	walls	of	large	tokamaks,	
and	 so	are	a	 concern	 for	 ITER.	The	elm-pb	model	 included	 in	 the	BOUT++	 repository	
solves	 a	 4-field	 model	 for	 pressure,	 vorticity,	 the	 parallel	 component	 of	 the	 plasma	
velocity	and	electromagnetic	potential.	 It	has	been	used	 for	 studies	of	ELM	eruptions,	
mainly	in	circular	geometry	plasmas.		

For	most	runs	the	default	input	settings	have	been	used,	including	the	provided	
grid	 files	 -	 cbm18_dens8.grid_nx68ny64.nc	 and	 cbm18_8_y064_x516_090309.nc.	 	 The	
default	grid	size	in	the	first	file	is	68	x	64	x	16	cells.	The	number	of	points	in	the	x	direction	
also	includes	the	boundary	points,	so	the	internal	points	for	this	grid	size	are	64	x		64	x	
16.	To	observe	how	the	code	scales,	the	following	two	grid	sizes	have	been	used	as	well	-	
64	x	64	x	64	(first	input	file)	and	512	x	64	x	64	(second	input	file).		

The	 second	 case	 study	 is	 called	 blob2d.	 The	 ‘blob’	 refers	 to	 isolated	 blobs	 of	
plasma	 often	 observed	 at	 the	 edge	 of	 tokamak	 (and	 other)	 plasmas.	 These	 blobs	 are	
elongated	 along	 the	 magnetic	 field,	 forming	 long	 filaments	 that	 have	 a	 surprisingly	
complicated	range	of	nonlinear	behaviour.	The	blob2D	model	simulates	isothermal	blobs	
with	 a	 sheath	 closure	 and	 is	 one	 of	 the	 basic	 examples	 included	 in	 the	 BOUT++	
distribution.	 The	 following	 executable	 arguments	 have	 been	 used	 to	 collect	 the	
performance	data:	delta_1,	mesh:nx=1028	mesh:nz=1024.	The	input	file	delta_1	includes	
the	simulation	parameters	and	is	also	available	in	the	BOUT++	distribution.	The	number	
of	time-steps	was	set	to	200	and	the	grid	size	was	overwritten	from	260	x	256	cells	to	
1028	x	1024	cells	(the	x	direction	includes	4	guard	cells).		

The	blob2d-outerloop	example	solves	the	same	set	of	equations,	with	the	same	
inputs,	as	blob2d.	In	this	version	of	the	code,	the	loop	over	the	simulated	region	is	placed	
as	high	as	possible	in	the	code	call	tree,	whereas	in	the	blob2d	version	the	loops	over	the	
grid	are	hidden	under	the	density	and	vorticity	equations	-	executed	in	separate	sections	
of	the	code.	This	refactoring	utilised	the	RAJA3	library,	which	is	a	software	library	of	C++	
abstractions	 that	 enables	 portability	 across	 different	 HPC	 architectures	 and	
programming	models.	It	targets	portable	parallel	 loop	execution	by	providing	building	
blocks	 that	 extend	 the	 parallel	 for	 idiom	 to	 insulate	 application	 loop	 kernels	 from	
underlying	architecture	and	programming	model-specific	implementation	details.	When	
RAJA	 is	not	enabled	 the	 loop	constructs	revert	 to	 the	BOUT	 loops,	which	are	OpenMP	
loops	when	OpenMP	is	enabled.		
	

Results		
	
Elm-pb	-	scaling	results		

Figure	1	shows	the	scaling	of	the	MPI-only	execution	of	the	elm-pb	model	on	3	
different	 grid	 sizes.	 The	 scaling	 clearly	 improves	 with	 the	 increasing	 grid	 sizes.	 The	
parallel	efficiency	drops	below	50%	when	the	grid	size	per	PE	is	smaller	than	16	x	8	x	z,	
which	 for	 the	 two	 smaller	 grid	 sizes	 occurs	 on	 32	 MPI	 processes,	 and	 on	 256	 MPI	
processes	 for	 the	 bigger	 one.	 Using	 a	 smaller	 domain	 per	 PE	 incurs	more	 significant	
communication	 overheads,	 making	 the	 ratio	 of	 computation	 to	 communication	 less	
favourable.	The	grid	sizes	are	rather	small	but	typical	for	these	kinds	of	simulations.	Using	
a	larger	number	of	smaller	sub-domains	will	not	improve	the	performance	significantly,	
therefore	there	is	no	point	in	using	a	larger	number	of	MPI	processes.	Instead	OpenMP	
has	been	used	to	parallelise	the	sub-grids	in	the	z	direction.		

To	 obtain	 a	 good	 performance	 using	 this	 hybrid	 approach,	 i.e.	 using	 MPI	 to	
partition	the	grid	in	the	x	and	y	direction	and	OpenMP	to	parallelise	the	z	direction,	it	is	
necessary	to	pick	a	good	ratio	of	MPI	processes	to	OpenMP	threads.	For	example,	using	a	
small	number	of	MPI	processes	and	a	large	number	of	OpenMP	threads	will	not	yield	a	
good	performance	due	to	the	bulk	of	computation	being	located	in	x-y	space.	There	is	also	
no	need	to	go	beyond	1	node	for	the	smaller	problem	sizes.		
	

The	 ARCHER2	 documentation	 suggests	 using	 the	 --distribution=block:block	
option	to	ensure	the	processes	are	distributed	across	nodes	and	NUMA	regions	in	a	block	

3 https://raja.readthedocs.io/en/develop/

fashion.	On	a	single	node,	the	block	distribution	just	ensures	more	local	pinning	of	the	
processes	to	NUMA	nodes	-	i.e.	each	NUMA	region	is	filled	before	moving	to	the	next	one.	
For	the	MPI	only	execution	there	was	no	significant	difference	between	the	runs	with	and	
without	the	block	distribution	specified;	however,	the	execution	time	for	the	runs	with	
the	block	distribution	 is	significantly	 faster	when	OpenMP	threads	are	used	(Table	1).	
Placing	MPI	processes	and	their	OpenMP	threads	contiguously	within	one	NUMA	region	
before	moving	on	to	the	next	one	ensures	better	data	locality	and	cache	utilisation.		

	
Figure	1	-	Parallel	Speedup	of	MPI	only	execution	of	the	elm-pb	model	for	3	different	grid	sizes.		
	
	

#	MPI	x	OMP	 Default	distribution	 Block	distribution	

128	 29.61	 29.54	

128	x	1	 32.43	 31.89	

64	x	2	 35.37	 29.39	

32	x	4	 32.15	 25.35	

16	x8		 35.64	 36.75	

8	x	16	 71.09	 56.89	

	
Table	1	-	Run	times	for	different	numbers	of	MPI	processes	and	OpenMP	threads	executed	on	a	
single	node	with	and	without	the	block	distribution	for	the	Elm-Pb	model	with	the	grid	size	of	

64x64x16	run	for	150	steps.	
	

The	 fastest	 execution	 time	 is	 observed	 for	 the	 configuration	 using	 32	 MPI	
processes	and	4	OpenMP	threads.	This	setting	corresponds	to	the	optimal	size	of	the	sub-
domains	and	also	maps	well	onto	the	underlying	hardware	-	using	one	MPI	process	per	
Core	CompleX	(CCX)	and	one	OpenMP	thread	per	core.	Level	1	and	 level	2	caches	are	

private	to	each	core,	however,	level	3	cache	is	shared	between	the	4	cores	on	the	CCX.	
Moreover,	L3	is	a	victim	cache.	Using	4	threads	per	MPI	process,	ensures	better	cache	
reuse	i.e.	one	L3	cache	per	MPI	process.		
	
	

32	MPI	x	4	
OMP		

thread	time	
(s)	

L2	cache	
misses	

L2	PREFETCH	
HIT	

L3	PREFETCH	
HIT		

Rq	from	
memory	
(lines)	

Default	
distribution	 32.15	 586,158,508	 282,819,673	 303,162,367	 79,853,288	

Block	
distribution		 25.35	 588,747,878	 424,460,596	 509,701,382	 63,862,692	

	
Table	2	-	Cache	utilisation	for	the	configurations	of	32	MPI	processes	and	4	OpenMP	threads	for	
the	elm-pb	model	-	grid	size	64x64x16	and	run	for	150	steps.		Executed	with	and	without	the	

block:block	distribution.		
	

The	 combination	 of	 32	MPI	 processes	 and	 4	OpenMP	 threads	 gives	 one	 of	 the	
highest	values	of	L2	prefetch	accuracy	(percentage	of	prefetch	hits	to	all	prefetches)	and	
prefetch	coverage	 (percentage	of	misses	avoided	due	 to	prefetching	 i.e.	prefetch	hits/	
(prefetch	hits	+	cache	misses)).	Other	combinations	yield	one	of	the	values	significantly	
higher	than	the	other.	Using	the	block	distribution	improved	the	prefetching	coverage	by	
over	10%.	Both	values	are	around	42%,	signalling	that	the	memory	access	patterns	are	
perhaps	not	as	optimal	as	hoped	for.	Data	structures	adopted	in	BOUT++	can	be	quite	
complicated.	The	main	objects	such	as	 fields	were	tracked	through	the	source	code	to	
ensure	they	are	initialised	correctly	when	OpenMP	is	used.	Overall,	the	fields	and	other	
multidimensional	 arrays	 seem	 to	 be	 initialised	 inside	 OpenMP	 regions	 ensuring	 the	
correct	affinity	between	the	right	segments	of	data	for	each	thread	-	assuming	the	static	
schedule	is	used.	
	

	
	
Figure	2	-	Overview	of	the	ScoreP	profile	for	the	elm-pb	mode	executed	on	32	MPI	processes,	

using	4	OpenMP	threads	per	processes	-	grid	size	64x64x16	and	300	steps.		
	

One	 of	 the	 reasons	 for	 the	 poor	 performance	 of	 the	 hybrid	 MPI-OpenMP	
implementation,	 besides	 the	 relatively	 small	 problem	 size,	 is	 the	 fragmented	 parallel	
coverage	of	the	OpenMP	regions.	Many	of	the	OpenMP	regions	are	small	and	executed	
millions	 of	 times,	 even	 during	 short	 runs,	 significantly	 contributing	 to	 the	 parallel	

overheads.	 Figure	2	 shows	 an	overview	of	 the	 ScoreP	profile	 for	 the	best	 performing	
combination	of	32	MPI	processes	and	4	OpenMP	threads.	It	is	clear	that	most	of	the	time	
is	spent	in	small	OpenMP	regions	executed	almost	3	billion	times.	To	collate	those	small	
OpenMP	regions	and	to	prepare	the	code	for	future	and	more	complex	architectures	RAJA	
has	been	used	to	refactor	the	code.		

	
Blob2d	-	Refactored	Code	
	

As	described	in	the	earlier	section,	the	blob2d-outerloop	model	should	solve	the	
same	set	of	equations	as	blob2d	when	the	same	input	parameters	are	used.	Table	3	shows	
the	runtimes	for	both	code	versions	run	for	200	steps	using	different	numbers	of	MPI	
processes	and	OpenMP	threads	to	fill	a	single	node.	The	performance	gain	increases	with	
the	 increasing	number	 of	OpenMP	 threads,	with	 the	 fastest	 run	 still	 observed	 for	 the	
combination	of	32	MPI	processes	and	4	OpenMP	threads.	The	refactoring	of	the	code	had	
a	significant	impact	on	the	memory	access	patterns	and	the	overall	number	of	operations.	
To	better	understand	how	the	two	codes	differ,	the	PAPI	hardware	performance	counters	
have	been	 collected	using	CrayPAT	via	 the	PAT_RT_PERFCRT	environmental	 variable,	
some	of	which	are	presented	in	Table	4.		
	

MPI	x	OMP	 blob2d	 blob2d-outerloop	 Relative	Speedup	

128	x	1	 229s	 83s	 ~2.8	

32	x	4	 200s	 67s		 ~3	

16	x	8	 330	s	 92s		 ~3.6	

	
Table	3	-	The	runtimes	for	the	blob2d	and	blob2d-outerloop	examples	run	for	200	steps	on	a	

different	number	combination	of	MPI	processes	and	OpenMP	threads.		
	

Event	 Blob2d	 Blob2d-outerloop		

PAPI_TLB_DM	
(TLB	data	misses)	

0.016G/sec					
2,902,983,742.500	misses	

0.008G/sec						
566,396,378.719	misses	

PAPI_TLB_IM		
(TLB	instruction	misses)	

0.686M/sec							
121,183,749.656	misses	

0.002G/sec							
112,647,635.125	misses	

Write	 Memory	 Traffic	
GBytes						

0.234G/sec											
	45.63	GB	

0.111G/sec												
8.13	GB	

Read	 Memory	 Traffic	
GBytes		

	0.979G/sec											
190.65	GB	

		0.733G/sec										
	53.75	GB	

PAPI_L2_ICH	
(L2	instruction	cache	hits)	

0.011G/sec			
1,970,136,143.969	hits	
	

0.024G/sec			
1,577,067,719.000	hits	

Event	 Blob2d	 Blob2d-outerloop		

PAPI_FP_OPS	
	
	
MFLOPS	(aggregate)	

0.019G/sec			
3,885,146,242	ops	
	
	592.69M/sec	

	0.006G/sec			
461,588,495	ops		
	
206.29M/sec			

PAPI_FP_INS	
Floating-point	
instructions	

1.961G/sec			
407,467,258,215.062	ops	

1.421G/sec			
109,058,915,578.156	ops	

	
Table	4	-	A	selection	of	PAPI	events	collected	for	both	the	blob2d	and	blob2d-outerloop	

examples,	run	for	200	steps	using	32	MPI	processes	x	4	OpenMP	threads.		
	
The	most	significant	difference	between	the	two	code	versions	can	be	observed	

for	the	Translation	Lookaside	Buffer	(TLB)	data	misses.	TLB	assists	the	load	and	store	
address	translations,	therefore,	a	TLB	miss	is	associated	with	the	increased	number	of	
read	and	write	operations	 to	 the	main	memory,	 thus	having	a	negative	 impact	on	 the	
performance.	The	outerloop	version	has	over	5	times	fewer	TLB	data	misses	overall	and	
2	times	fewer	per	second.	This	difference	is	also	reflected	in	the	increases	in	the	read	and	
write	 memory	 traffic	 seen.	 The	 significant	 reduction	 in	 the	 TLB	 data	 misses	 in	 the	
outerloop	is	due	to	the	rearrangement	of	the	data	access	patterns.	Looping	over	the	grid	
once	at	 a	higher	 level	 ensures	better	 reuse	of	 the	 entries	 stored	 in	 the	TLB,	 and	 thus	
reducing	the	misses.	The	total	number	of	instruction	TLB	misses	are	comparable	to	those	
observed	for	the	original	version	of	the	code,	but	there	are	more	than	2	times	fewer	of	
them	per	second.		

Although	the	number	of	L1	cache	accesses	is	lower	in	the	outerloop	version,	this	
is	 because	 there	 are	 fewer	 instructions	performed	overall,	 and	 the	 rate	per	 second	 is	
actually	 higher	 compared	 to	 that	 observed	 in	 the	 original	 version	 of	 the	 code.	 The	
significant	difference	in	the	rates	per	second	can	be	observed	for	the	L2	instruction	cache	
hits	and	misses.	 In	 the	outerloop	version	 the	number	of	L2	 instruction	cache	hits	per	
second	is	over	2	times	higher,	and	the	number	of	the	L2	instruction	cache	misses	is	much	
lower.	The	rates	of	the	L2	data	reads	are	very	similar	for	both	versions	of	the	code.	This	
confirms	that	the	code	refactoring	improved	the	data	 locality.	All	calculations	for	each	
grid	 cell	 are	 performed	 at	 once,	 rather	 than	 spread	 throughout	 the	 code	 e.g.	 each	
component	of	the	equation	calculated	separately.				

The	difference	between	the	total	number	of	branch	instructions	in	two	versions	of	
the	code	comes	mostly	from	moving	the	loop	over	the	simulated	region	higher	up	in	the	
code	hierarchy,	and	thus	reducing	the	number	of	loops	over	the	grid.	Replacing	two	lower	
level	 for	 loops	with	 a	 single	 for	 loop,	 cuts	 the	 number	 of	 branch	 instructions	 by	 half.	
However,	those	are	the	easy	to	predict	branches.	In	most	cases	the	branch	at	the	end	of	a	
loop	will	be	taken	-	until	the	loop’s	terminal	condition	is	reached.	The	number	of	branches	
taken	in	the	outerloop	version	of	the	code	is	~2.5	times	lower,	the	total	number	of	branch	
instructions	 is	 about	 2.8	 times	 lower	 and	 there	 are	 over	 2.1	 times	 fewer	 branches	
mispredicted.	 For	 both	 code	 versions	 not	 even	 0.4%	 of	 the	 taken	 branches	 were	

mispredicted.	 Reducing	 the	 number	 of	 branch	 instructions	 had	 a	 positive	 effect	 of	
reducing	 the	execution	 time,	but	easily	predictable	branches	usually	 take	only	1	cycle	
anyway.	 The	 total	 number	 of	 floating-point	 operations	 is	 over	 8	 times	 lower	 in	 the	
outerloop	version	and	the	 total	number	of	 floating-point	 instructions	 is	about	4	 times	
lower.		

Table	 5	 shows	 some	 of	 the	 collected	 HW	 counters	 for	 different	 numbers	 of	
OpenMP	threads	per	MPI	processes:	128	MPI	x	1	OMP,	32	MPI	x	4	OMP,	16	MPI	x	8	OMP	
and	 8	 MPI	 x	 16	 OMP.	 Overall,	 the	 number	 of	 TLB	 misses	 is	 lower	 when	 fewer	 MPI	
processes	 are	 used,	 however,	 the	 number	 of	 L2	 data	 cache	 hits	 and	 the	 number	 of	
instructions	 per	 cycle	 is	 the	 highest	 for	 the	 combination	 of	 32	 MPI	 processes	 and	 4	
OpenMP	threads.	Using	more	OpenMP	threads	means	increasing	the	risk	of	false	sharing,	
and	using	4	threads	per	MPI	processes	means	confining	the	threads	belonging	to	each	
process	to	single	CXX	on	ARCHER2,	resulting	in	the	best	memory	re-use.	
	

	 128	MPI	x	1	OMP	 32	MPI	x	4	OMP	 16	MPI	x	8	OMP	 8	MPI	x	16	OMP	

Execution	
	time	

	85.2	secs	
		

	63.5	secs	
	

90.8	secs	
	

143.5	secs	
	

TLB_DM	 0.012G/sec					 0.008G/sec					 0.007G/sec							 0.005G/sec							

TLB_IM	 0.002G/sec							
	

136,423,798.969	
misses	

0.002G/sec					
	

112,647,635.125	
misses	

0.001G/sec			
	

110,034,465.125	
misses	

0.815M/sec					
	

117,019,893.375	
misses	

TOT_INS	 3.650G/sec			 4.571G/sec			
	

4.778G/sec			 4.545G/sec			

TOT_CYC	
Instructions		
per	cycle		

	

	
	1.36	inst/cycle	

	

	
1.57	inst/cycle	

	

		
1.49	inst/cycle	

	

	
1.41	inst/cycle	

	

L2_DCH	 0.056G/sec		
	

0.073G/sec		
	

0.057G/sec			
	

0.048G/sec			
	

L2_ICH	 0.033G/sec		 0.024G/sec			 0.015G/sec			 0.009G/sec			

	
Table	5	-	Selected	performance	HW	counters	collected	for	the	blob2d-outerloop	model	

executed	on	a	range	of	different	MPIxOpenMP	configurations.		
	

Conclusions		
	

Simply	using	the	hybrid	MPI	+	OpenMP	parallelisation	doesn’t	necessarily	provide	
a	good	scaling	behaviour.	It	is	often	necessary	to	play	with	the	settings	to	find	the	optimal	
run	configuration	for	a	use	case	of	interest.	The	best	setting	on	ARCHER2	for	both	models	
(elm-pb	and	blob2d)	and	code	versions	has	been	observed	by	using	the	combination	of	
32	MPI	 processes	 and	 4	 OpenMP	 threads.	 Using	 4	 OpenMP	 threads	 per	MPI	 process	

allows	for	efficient	use	of	the	cache	memory	available	on	the	system.		The	refactored	code	
shows	better	scaling	and	benefits	more	from	the	hybrid	parallelisation.		

The	initial	poor	scaling	of	the	hybrid	MPI	and	OpenMP	parallelisation	was	due	to	
a	combination	of	factors,	including	the	adopted	domain	decomposition	(MPI	used	in	the	
x	and	y	directions	and	OpenMP	used	 in	 the	z	direction),	 relatively	small	problem	size	
(typical	 in	 the	 field)	 and	 extremely	 fragmented	 OpenMP	 coverage.	 The	 adopted	 data	
structures	 are	 correctly	 initialised	 across	 OpenMP	 threads	 so	 the	memory	 locality	 is	
taken	into	consideration.		

The	refactoring	of	the	code	to	use	only	one	work	kernel	loop	per	timestep	proved	
to	be	very	beneficial	to	the	performance.	The	code	is	significantly	faster	for	the	tested	
case	study.	This	is	both	due	to	the	reduced	number	of	operations	and	better	reuse	of	the	
memory,	 reflected	 in	 a	 smaller	 number	 of	 TLB	 and	 cache	 misses	 and	 higher	 rate	 of	
instructions	 executed	 per	 cycle.	 Although	 only	 blob2d	 model	 has	 been	 tested,	 it	 is	
expected	that	other	models	implemented	in	BOUT++	would	benefit	from	the	refactoring	
as	well.		Using	only	one	work	kernel	per	timestep	should	result	in	better	memory	use	for	
all	models.	
	

Acknowledgments		
	
This	work	was	funded	under	the	embedded	CSE	programme	of	the	ARCHER2	UK	
National	Supercomputing	Service	(http://www.archer2.ac.uk).	

