
eCSE Technical Report on work for ARCHER2-eCSE02-6

eCSE Technical Report on work for ARCHER2-eCSE02-6

Abstract
MITgcm is a freely available, community-driven, open-source general circulaFon model

designed for the study of the atmosphere, ocean, cryosphere, and climate. It provides the core
soHware upon which specific models are built to run in forward or adjoint modes. Three were ported
to Archer2, validated and opFmised. Significant speedup and reducFons in total node-hours were
achieved by fully uFlising the cores on each node to the extent that the need to divide the total grid
into sub-grids permiLed. The AMUNDICE adjoint case was run with a containerised OpenAd,
developed in response to this project, and achieved 3-fold speedup by use of the PETSc library. These
three exemplars of MITgcm are documented on the Archer2 website, supplemented by a project
GitHub repository. Updates have been incorporated into code repositories for MITgcm and the
models.

1. IntroducBon
MITgcm [1] is a freely available, community-driven, open-source general circulaFon model

designed for the study of the atmosphere, ocean, cryosphere, and climate. It provides the core
soHware for hydrodynamics upon which specific models are built. Of these 3 were ported to Archer2,
validated and opFmised. PAS (ProjecFons of the Amundsen Sea [2] is a regional, high-resoluFon
configuraFon of the Amundsen Sea region of AntarcFca, including ice shelf thermodynamics and sea
ice. AmundIce adds to MITgcm a dynamic land-ice package, Streamice [3] to form a dynamic flow
model of the Amundsen region. ECCOv4 [4] is a global ocean state esFmate on a 5-sided lat-lon-cube
grid. It is considered one of the benchmark data assimilaFon products in oceanography.

These exemplar models are built from the MITgcm Fortran code with addiFonal funcFons
and packages specific to each model. For AmundIce, the PETSc package [5] was added. For adjoint
modelling an automaFc differenFaFon tool is used: TAF [6] or OpenAD [7]. MITgcm provides scripts
to enable the building of the model. These were modified by the project to add support for a
containerised OpenAd.

Each build uses an “opt file” to specify the compilaFon flags used. The opt file has opFons for
ieee compliance, and for faster maths. The opt file is used by the MITgcm script genmake2 which
generates and runs a Makefile. The Cray opaile is the one being formally supported from this work
by integraFon with the MITgcm distribuFon. GNU Fortran cases performed similarly well for most
cases. The GNU compiler is used with AmundIce as explained below.

eCSE ID: ARCHER2-eCSE02-6

eCSE Title: OpFmising MITgcm on ARCHER2: efficient
numerical simulaFon and data assimilaFon tools
for studying the ocean, atmosphere, and
cryosphere.

PI Name: Dr Emma JD Boland

Author of this document: Dr Emma JD Boland, Dr Mike Mineter

Name of technical staff on the project: Dr Mike Mineter

List of names to acknowledge with the project
(by default we will use the PI, Co-Is and
Technical staff members):

Dr Emma JD Boland, Dr Dan(i) Jones, Dr Kaitlin A
Naughten, Dr Daniel N Goldberg, Dr Mike
Mineter

eCSE Technical Report on work for ARCHER2-eCSE02-6

 The porFng to Archer2 benefiLed from the 2016 eCSE project that had ported MITgcm to
Archer [8]. The report from that project, a more extended format than is required for current eCSE
projects, describes the soHware in more detail. We would also like to acknowledge the work of
William Lucas, who carried out the iniFal porFng of MITgcm onto ARCHER2.

2. Methodology
 The different models use different checkpoints of the MITgcm soHware, as shown in table 1.

Table 1 MITgcm releases that were used in the por8ng

 First, the standard MITgcm verificaFon tests were run to test the port itself (see secFon 4).
Then the same approach was taken for each of the three specific setups:
1. Build, run and validate an instance of the model to replicate a trusted model for which we had

outputs from Archer. We used the same number of cores as had been used on Archer with non-
opFmised (ieee) compilaFon flags.

2. EsFmate the opFmal numbers of nodes and tasks/node, taking account of the 128 cores/node and
the costs being per node, not per core so that the total node-hours is also a criterion to be used.
This entails checking the memory needed in the iniFal benchmark (using SLURM sstat and sacct
commands). In the chosen cases memory was more than sufficient for 120 processes/node, but
caching complicates the picture.

3. Trial alternaFve compilaFon flags with this esFmated number of nodes/tasks, for a shorter run.
4. Check alternaFve plausible numbers of nodes, also tesFng alternaFves for the srun distribuFon

flags. These determine how srun and SLURM allocate consecuFve MPI processes across nodes (1st
opFon) then across NUMA regions of each node (link to Archer2 documentaFon). This confirmed
that the iniFal choice of “block:block” is preferred usually – but not always (e.g. a case in ECCO
below).

5. Rerun the opFmised benchmark case as a final validaFon and measure of performance
6. In the performance tests at least 2 runs of each viable configuraFon were made and the quickest

Fmes used.

6.1.AddiBonal Tests
 Tests were run to explore the alternaFve less-used MPI layer UCX with both PAS and ECCOv4.
This gave a Fny advantage in some cases, but slight deterioraFon in general and at Fme of tesFng
UCX was closer to the bleeding edge. MulFthreading tests with PAS gave rise to obscure errors and
this was not pursued.

6.2.Test Phases
 The work was done in two phases. The first phase installed, did runs using aggressive
opFmisaFon, checked results, and then made the soHware available on the 4-cabinet system. We
then paused unFl the full system was available to do further runs to explore alternaFve compilaFon
flags and allocaFon of processes to nodes. We had also hoped to have the flash filesystem available
but this is sFll awaited by Archer2. The phasing also ensured the goal that the full Archer2 system
can readily be used but disrupted momentum and required some duplicaFon of effort.

MITgcm checkpoint

ECCOv4 66g

PAS 67s

AmundIce hLps://github.com/dngoldberg/MITgcm/tree/streamic_petsc_3_8_update
Dan Goldberg’s repository, submiLed for merging, branched from 68i

https://github.com/dngoldberg/MITgcm/tree/streamic_petsc_3_8_update

eCSE Technical Report on work for ARCHER2-eCSE02-6

Table 2 System so<ware used on 4-cabinet and full systems

RunFmes with the gnu compiler were comparable to those with Cray’s Fortran. We note that
namelist terminators need to be “&” with Cray and “/” with gnu.

7. DocumentaBon
 The build and use of MITgcm and the specific models are documented:

• Where appropriate in the MITgcm documentaFon [9].
• On the Archer2 research soHware site [10].
• With addiFonal informaFon on the project’s GitHub site. (hLps://github.com/eCSE-MITgcm-

ARCHER2). This holds code, further user documentaFon, input data. This will also be a
resource for further development and enhancement.

8. VerificaBon tests
 Standard MITgcm verificaFon tests [11] were run to test the MITgcm port itself using the
checkpoint 66g, achieving results deemed saFsfactory both with single processor and the MPI runs
with the default 2 cores, see table 3. The test of the port had already reproduced the expected
benchmark results with PAS and ECCOv4, so these were also taken as indicaFve of a successful basis
port of the MPI-enabled models. The standard verificaFon tests were run using the Cray compiler
with the MITgcm testreport script.

Table 3 Summary of valida8on test results with Cray Fortran

 In the MPI case, 4 of the 5 failures were due to the precision with which cg2d agreed with
test data, of these only one case having fewer than 7 significant figures of agreement (lab_sea.hb87).
The difference in total numbers of tests is due to some tests not supporFng MPI.

 A summary of the tests and associated the associated SLURM scripts are held at [12].

9. PAS (ProjecBons of the Amundsen Sea)
 RouFne changes were made to PAS scripts to replace Archer’s PBS with SLURM, including to
enable chained jobs, where on compleFon of one job the next is queued to achieve long runs. (This
is currently achieved with a Fmeout that interrupts a job 3 minutes before the job’s Fme expires. It

full system
craype/2.7.6
cray-mpich/8.1.4
libfabric/1.11.0.4.71
xpmem/
2.2.40-7.0.1.0_2.7__g1d7a
24d.shasta
cray-libsci/21.04.1.1

4 cabinet
craype/2.7.2
cray-mpich/8.0.16
libfabric/1.11.0.0.233
cray-dsmml/0.1.2
xpmem/2.2.35-7.0.1.0_1.9__gd50fabf.shasta
cray-libsci/20.10.1.2

GNU gcc/10.2 gcc/10.1.0

Cray Cray Fortran : Version
11.0.4

Cray Fortran : Version 10.0.4

Number of passes Number of fails

Serial, opFmised (4c
system)

73 17

MPI (2 processes), ieee 80 5

https://github.com/eCSE-MITgcm-ARCHER2
https://github.com/eCSE-MITgcm-ARCHER2

eCSE Technical Report on work for ARCHER2-eCSE02-6

was noted that Archer2/SLURM defaults to allowing 30 seconds to handle traps, so there might be
some scope for simplifying this script – that was untested)

 Failures at runFme led to two simple changes in code being applied to the PAS code. Minor
amendments were made to scripts. The serial job for generaFng NetCDF requires –mem=4G in order
that a chained PAS job is successful.

 Runs of the PAS benchmark produced 12 months of data, see table 4. Monthly domain-
averaged ocean temperatures, matching to 6 decimal places, were taken as the indicator of
correctness.

Table 4 Benchmarking runs of PAS_053 (the “ieee” runs are unop8mised. Cce demotes the Cray compiler was used)

 Runs on two nodes with 240 cores were about 10% faster than those with 192 cores, using
opFmised code: here the advantage from parallel computaFon outweighed the cost of caching
refreshes and MPI. The minimum node hours indicates the cheapest run, with budgets and energy in
mind. Short runs were carried out to compare performance with different compilaFon flags,
numbers of nodes, cores, see table 5. The speedup is shown for the fastest runFme for 120, 240 and
360 cores, with orange highlighFng the differences between the columns.

 AddiFonal tests found the srun distribuFon block:block was found to be preferable.

 A trial of mulFthreading with 3 nodes, 30 processes on each and 4 threads per process with
each process using 4 cores was tried but without success, the job failing in ways noted in (PAS git).
The raFonale for hybrid (mulFmode with some OpenMP) is that the overhead of MPI and perhaps
sequenFal parts of the code, might be reduced and benefit cases where scalability of MPI in this case
is seen to reduce. However a concern is that addiFonal validaFon beyond Fme available, would be
needed to ensure all outputs are correct so this was not prioriFsed.

 The code and scripts with these changes applied are in [13] and are now maintained in [14]
by K Naughten.

Archer
ieee

Archer2,
cce
ieee

Archer2
cce ieee

Archer2
cce
opFmised

Archer2
cce
opFmised

Archer2
gnu

Archer2-
4c
gnu

Archer2
gnu

Number of
cores

192 192 240 192 240 192 240 240

Number of
nodes

8 2 2 2 2 2 2 2

Tasks/node 16 96 120 96 120 96 120 120

Flags -O0
-hfp0

-O0
-hfp0

-O0
-hfp0

-O3 -hfp3
-Oipa5

-O3 -hfp3
-Oipa5

-O3
-funroll-
loops

-O3
-funroll-
loops

"-O3
-funroll-
loops"

RunFme sec. 9102 13391 10768 7332 5288 6493 5624 5352

Node-hours - 7.4 6.0 4.1 2.9 3.6 3.1 3.0

eCSE Technical Report on work for ARCHER2-eCSE02-6

Table 5 PAS: Effect of compila8on flags on shorter runs

10.AmundIce
 MITgcm and its STREAMICE package [3] were integrated with OpenAD and PETSc to create
the AmundIce dynamic flow model of the Amundsen region.
On the 4-cabinet system,
• PETSc was deployed following EPCC/Archer2 guidance
• MITgcm was integrated with PETSc by amendment to the STREAMICE interfaces hLps://

github.com/MITgcm/MITgcm/pull/630
• OpenAD was deployed in a container, following [15].
• The amendments to the MITgcm genmake2 script to use this OpenAd were added to the MITgcm

branch at git@github.com:dngoldberg/MITgcm.git, for which a pull request is issued to merge with
the MITgcm checkpoint.

 The above developments were deployed on the full Archer2 system, The GNU compiler was
used, a decision that predated the containerisaFon of OpenAD.

 Tests were as follows including to assess the advantage of using PETSc (found on Archer to
give 3-fold speedup):

• Data from a run of 240 Fmesteps (each is one month) with 90 cores on 1 node was
validated by eye against Fig 2, first panel, of [16].

• A short run (3 Fmesteps) with the same configuraFon was used, its values of
STREAMICE_FP_ADJ_ERROR and cf then being used to validate further short runs,

• Short runs were used to seek opFmal flags, srun arguments, and node numbers for the
cases both with and without PETSc being used. The opFmisaFon flags were set in the opt
file.

• Using the apparent opFmal configuraFons long runs were repeated with and without PETSc.

 The outcomes were:
• Without PETSc, sexng the compilaFon flag to -O2 was faster by 8% as compared to -O3,

however the long runs crashed, with both 90 and 120 cores in ways being invesFgated.
Further progress will be reported in the repository (see below)

• With PETSc there was
• a 3 -fold speedup (as on Archer1) in the short runs
• InsensiFvity in run Fmes as to whether -O2, -O3 or “-O3 –funroll-loops" was used in

the opt file.

cce cce cce cce cce cce gnu

Number of cores 120 240 240 240 240 360 240

Number of nodes 1 2 2 2 3 3 2

Tasks/node 120 120 120 120 80 120 120

Flags -O3
-hfp3
-Oipa5

-O3 -hfp3
-Oipa5

-O3 -hfp3
–Oipa4

-O2 -hfp3
–Oipa5

-O3
-hfp3
-Oipa5

-O3
-hfp3
-Oipa5

-Ofast
-funroll-
loops

RunFme sec. 2985 1723 1909 1910 1775 1564 1744

Speed-up
compared to 120
cores/1node

1 1.73 1.91

Node hours 0.8 0.96 1.3

https://github.com/MITgcm/MITgcm/pull/630
https://github.com/MITgcm/MITgcm/pull/630

eCSE Technical Report on work for ARCHER2-eCSE02-6

• A further ~14% speedup was achieved with 120 processes on 1 node as compared to the
iniFal 90 processes.

• Spreading 90 processes across 3 nodes made liLle difference to runFme but importantly for
confidence in the porFng, gave the same results.

• The 240 Fmestep case with 120 cores, -O3 and with PETSc used, ran in just under 3 hours.

 The above is documented with the associated input data and code in the repository [17] .

11.ECCOv4
11.1.Cray compiler

 We installed and tested a benchmark as run on Archer, with 96 and then 360 cores for the
same ECCOv4 case, see table 7. Changing the number of cores entails using different SIZE.h at
compile Fme and corresponding file data.exch2 at run Fme. The runs were checked against Archer
results for correctness using a script that extracted data from STDOUT.0000.

Table 7 ECCOv4 Benchmark using cray compiler, 96 cores and on Archer 2 block:block srun distribu8on unless stated

 The above opFmised columns highlight in orange the best results in terms of fastest run and
cheapest run. The previous columns are of unopFmised code, with 96 cores distributed over
different numbers of nodes. Note that the usual block:block distribuFon was not opFmal: with 4
nodes each with 24 tasks, cyclic:cyclic was 30% faster than block:block.

 Further runs with 192 processes with 2 nodes, and with 360 processes, with 2,3 and 4 nodes,
improved on neither run Fme nor node-hours, as compared to the opFmised 96 core runFmes in the
table. In deciding how many processes and cores to use in future research on Archer2, the prioriFsed
criterion would normally be to minimise node hours. Consequently we would expect future runs
derived from this case to use 96 cores and 1 node with block:cyclic distribuFon.

11.2.GNU compiler
 Using GNU in place of the Cray compiler, text wriLen to stdout was perplexing in that each /
was replaced by #. This was traced to the archive builder “as” having an alias in the MITgcm tools
directory, it being included in the $PATH. This had apparently been needed in a previous installaFon
with a different compiler, pgf77. It sFll exists in recent checkpoints. Simply explicitly scripFng the

Archer
ieee

Archer2,
ieee

Archer2,
 ieee

Archer2
cce
ieee

Archer2
cce
ieee

Archer2
cce
opFmised
 fastest

Archer2 cce
opFmised;
cheapest

Number
of nodes

8 8 4 2 1 4 1

Tasks/
node

12 12 24 48 96 24
cyclic:cyclic

96
block:cyclic

Flags -O0
-hfp0

-O0
-hfp0

-O0
-hfp0

-O0
-hfp0

-O0
-hfp0

-O3 -hfp3
-Oipa5

-O3 -hfp3
-Oipa5

RunFme
sec.

10590 12813 12638 13181 13925 1786 2669

Node
hours 28.5 14.0 7.3 3.9 2.0 0.7

eCSE Technical Report on work for ARCHER2-eCSE02-6

path to genmake, rather than using $PATH avoids this.

 For the 96 cores case there was liLle difference in performance when comparing GNU-
compilaFon with “-O3 –funroll-loops” with performance from the Cray.

 Runs with the 360 processes failed with the GNU compiler – this is being invesFgated, aware
that a similar circumstance with PAS led to idenFficaFon of two coding correcFons related to
uniniFalized data which could have such effects.

11.3.Adjoint model using TAF
 We note that although the use of the commercial tool TAF [6] is outside the scope of the
eCSE project, in related work we have also demonstrated this capability on ARCHER2.

 All code and scripts related to the above changes are held at [18].
12.Outcomes
 With the PAS and ECCOv4 exemplars explored above, the most cost-effecFve runs were
when nodes were fully used, and with the opFmisaFon flags in the Cray opt file. ECCOv4 was opFmal
with cyclic assignment of processes to NUMA nodes. The AmundIce case was successfully tested with
developments that integrated StreamIce with PETSC and with the containerised OpenAD. This was
used in research published in December 2021 [16]. PAS has been now been successfully used on
Archer2 for mulF-century simulaFons, the wallFme per year on these long producFon runs is about
50% faster than on Archer, and that combined with the faster queuing is speeding up the research to
the point where a publicaFon should be submiLed by the end of the 2022.
 A workshop for all UK MITgcm users on ARCHER2 is planned for summer 2022, which will
extend the benefit of the work carried out here. As well as providing a basic outline of installing and
running MITgcm, the code developed here can be used as the basis for opFmisaFon of other MITgcm
models.
 It was recognised in the proposal that these runs were less intensive than most on Archer2,
but expect the lessons in tuning MITgcm to be transferable to future more intensive runs. We also
highlight the need for ensembles of jobs to be run: in these situaFons, we would follow the “job
array” guidance of [19] and the opFmisaFon of these cases would be even more important.

13.References
1. hLp://mitgcm.org/
2. Naughten, K. A., Holland, P. R., Dutrieux, P., Kimura, S., BeL, D. T., & Jenkins, A. (2022). Simulated

twenFeth-century ocean warming in the Amundsen Sea, West AntarcFca. Geophysical Research
Le\ers, 49, e2021GL094566. hLps://doi.org/10.1029/2021GL094566

3. hLps://mitgcm.readthedocs.io/en/latest/phys_pkgs/streamice.html
4. hLps://www.ecco-group.org/products-ECCO-V4r4.htm
5. hLps://petsc.org/release/
6. hLp://fastopt.de/products/taf/taf.shtml
7. hLps://www.mcs.anl.gov/OpenAD/openad.pdf
8. hLps://nora.nerc.ac.uk/cgi/stats/report/eprint/516314
9. hLps://mitgcm.readthedocs.io/
10. hLps://docs.archer2.ac.uk/research-soHware/mitgcm/mitgcm/
11.hLps://mitgcm.readthedocs.io/en/latest/contribuFng/contribuFng.html?highlight=test-

report#using-testreport-to-check-your-new-code
12. v1.0.0 eCSE-MITgcm-ARCHER2/eCSE-archer2-verificaFon hLps://doi.org/10.5281/

zenodo.6623438
13. v1.0.0 eCSE-MITgcm-ARCHER2/eCSE-archer2-PAS hLps://doi.org/10.5281/zenodo.6616578
14.hLps://github.com/knaughten/UaMITgcm/tree/archer2/example/PAS_999/mitgcm_run/scripts

http://mitgcm.org/
https://doi.org/10.1029/2021GL094566
https://mitgcm.readthedocs.io/en/latest/phys_pkgs/streamice.html
https://www.ecco-group.org/products-ECCO-V4r4.htm
https://petsc.org/release/
http://fastopt.de/products/taf/taf.shtml)
https://www.mcs.anl.gov/OpenAD/openad.pdf
https://nora.nerc.ac.uk/cgi/stats/report/eprint/516314
https://mitgcm.readthedocs.io/
https://docs.archer2.ac.uk/research-software/mitgcm/mitgcm/
https://mitgcm.readthedocs.io/en/latest/contributing/contributing.html?highlight=test-report#using-testreport-to-check-your-new-code
https://mitgcm.readthedocs.io/en/latest/contributing/contributing.html?highlight=test-report#using-testreport-to-check-your-new-code
https://mitgcm.readthedocs.io/en/latest/contributing/contributing.html?highlight=test-report#using-testreport-to-check-your-new-code
https://doi.org/10.5281/zenodo.6623438
https://doi.org/10.5281/zenodo.6623438
https://doi.org/10.5281/zenodo.6616578
https://github.com/knaughten/UaMITgcm/tree/archer2/example/PAS_999/mitgcm_run/scripts

eCSE Technical Report on work for ARCHER2-eCSE02-6

15.hLps://mitgcm.readthedocs.io/en/latest/autodiff/autodiff.html#building-the-mitgcm-adjoint-
using-an-openad-singularity-container

16.Morlighem M, Goldberg D, Dias dos Santos T, Lee J, Sagebaum M. Mapping the sensiFvity of the
Amundsen Sea Embayment to changes in external forcings using AutomaFc DifferenFaFon.
Geophysical Research LeLers. 2021 Dec 16;48(23):e2021GL095440. hLps://
agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021GL095440

17.v1.0.0 eCSE-MITgcm-ARCHER2/eCSE-archer2-AmundIce hLps://doi.org/10.5281/zenodo.6616564
18.v1.0.0 eCSE-MITgcm-ARCHER2/eCSE-archer2-eccov4r4 hLps://doi.org/10.5281/zenodo.6637671
19.hLps://docs.archer2.ac.uk/user-guide/scheduler/,

This work was funded under the embedded CSE programme of the ARCHER2 UK Na-tional
Supercomputing Service (http://www.archer2.ac.uk).

https://mitgcm.readthedocs.io/en/latest/autodiff/autodiff.html#building-the-mitgcm-adjoint-using-an-openad-singularity-container
https://mitgcm.readthedocs.io/en/latest/autodiff/autodiff.html#building-the-mitgcm-adjoint-using-an-openad-singularity-container
https://mitgcm.readthedocs.io/en/latest/autodiff/autodiff.html#building-the-mitgcm-adjoint-using-an-openad-singularity-container
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021GL095440
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021GL095440
https://doi.org/10.5281/zenodo.6616564
https://doi.org/10.5281/zenodo.6637671
https://docs.archer2.ac.uk/user-guide/scheduler/

	eCSE Technical Report on work for ARCHER2-eCSE02-6
	Abstract
	Introduction
	Methodology
	Additional Tests
	Test Phases

	Documentation
	Verification tests
	PAS (Projections of the Amundsen Sea)
	AmundIce
	ECCOv4
	Cray compiler
	GNU compiler
	Adjoint model using TAF

	Outcomes
	References

