

Technical Report for ARCHER2-eCSE02-02: Reducing UM-UKCA data
output using flight-track simulation

Maria R. Russo, Nathan Luke Abraham
National Centre for Atmospheric Science, Department of Chemistry, University of
Cambridge, Cambridge, U.K.

Abstract
The United Kingdom Chemistry and Aerosols model (UKCA) [1] is a component of the Met
Office Unified Model (UM) [2]. In this project we have developed a stand-alone flight-track
simulator code that can be embedded into the UM-UKCA workflow. This code outputs high
resolution data on a number of pre-defined flight tracks by interpolating modelled
dynamical, chemical, and aerosol fields from the model grid to the flight times and
locations. This data is then written to a CF-compliant NetCDF file that can be efficiently
stored, due to its small size, and more easily compared to flight observations. This method
achieves a large reduction in the size of model data being produced for comparison with
flight data. By interpolating global, hourly files onto flight-track locations, we reduce data
output for a typical climate resolution run, from ~3 Gb per model variable per month to ~15
Mb per model variable per month (a 200 times reduction in data).

1. Introduction
The UM-UKCA model allows users to run interactive chemistry and aerosol schemes with
the UM. As a whole-atmosphere composition-climate model, UM-UKCA simulates large
numbers of chemical and aerosol tracers using its stratosphere-troposphere (StratTrop)
chemistry [3] and GLOMAP-mode aerosol [4] schemes. Other chemistry schemes under
development include CRI-Strat [5,6]. As well as chemical and aerosol tracers, model
variables include numerous dynamical fields and further diagnostics.

In order to validate the chemistry schemes used in UM-UKCA, a wide variety of
observational datasets are used, such as ozone sondes, satellite observations, surface
stations, and observations from research aircrafts. Evaluating model configurations against
flight data is a useful tool to understand model biases and to help improve model
performance; moreover, model simulations can be used effectively to help interpret data
from flight campaigns. However, comparison between climate or weather forecast models
and aircraft data is not straightforward. Data from research aircrafts is defined on the
aeroplane flight track; this means that each point in time for the observations corresponds
to a fixed point in 3D space (associated to the longitude, latitude and pressure of the
research aircraft at that time), with observations taken at a high temporal frequency.
However, each point in time for modelled data corresponds to a large number of longitudes,
latitudes and pressure, defined by the model 3D grid. Model data is also typically only
available every 20 minutes or every hour due to the dynamical and chemical timesteps
used.

To be able to compare to flight-track data correctly, users in the past have output hourly (or
higher frequency) fields over a large part of the atmospheric domain (typically limiting only
in height). As well as using a large amount of storage space, handling such large files is very
time-intensive: extracting the hourly data from a tape archive typically requires ~3 hours per
model year, followed by several hours to read and interpolate these fields down to the
single-point of the flight track. This past method led to orders of magnitude more data being
generated, stored, and processed than is actually required, and significant amounts of time
and computer resources spent to extract, read and interpolate model data onto flight
tracks.

A previous attempt at producing model data on flight track code in a more efficient way was
made several years ago, by embedding a flight_track routine (using Fortran programming
language) within the UKCA source code [7]. However, this approach leads to a number of
problems:

1) The additional code will add a computational burden to the running of the UM-UKCA
main code, potentially slowing down the model integrations.

2) Model diagnostic related to some UM dynamical fields are not easily available within
the UKCA code.

3) Embedding code within the UM-UKCA model trunk requires strict coding practices
and model tests have to be designed and run to ensure the code runs properly and
remains effective as the structure of the UM-UKCA code evolves over time.

4) The format of output files is restricted to the UM internal file formats (e.g. UM
fieldsfile) which is not an easy-to-handle and internationally recognised format.

5) Due to strict licensing of the UM-UKCA code, any code developed which is
embedded within UM-UKCA cannot be easily made available.

As a result of the above points, the flight_track routine used in Telford et al. [7] was never
ported to further versions of UM-UKCA.

2. Method Overview
This section describes the method developed to allow model users to easily produce model
data on defined flight tracks as the model runs.

Instead of outputting and archiving large, hourly, 3D, gridded model fields, of which only a
small fraction is used, the code we have developed produces and archives much smaller
data files on flight tracks coordinates, therefore greatly reducing data storage requirements
and the time and resources necessary to process the data.

A flight track code (UM_to_flightrack.py) was developed using the python programming
language. This python code makes use of the Community Intercomparison Suite (CIS)
python library [8] interfaced to the cf-python library [9] for reading-in UM-format data files.
This new code is embedded into the UM-UKCA run-time workflow, by creating a new
Rose/Cylc ‘app’, flight_track_sim, which is inserted after the model timestep is completed
and before the postprocessing step. Rose[10] is the graphical user interface (GUI) for the
UM, and the Cylc[11] workflow engine is used to schedule the UM and other necessary tasks
on the HPC batch system. A schematic of the UM workflow with the flight track simulator
step (flight_track_sim) is shown in Fig 1.

Since this code is inserted into the UM-UKCA run-time workflow, it does not have any of the
problems listed in the previous section, which are typically associated with code developed
within the main UM-UKCA source code (e.g. similar to Telford et al. [7]). This method also
has the following advantages:

1) Model data on the flight track is output using the internationally recognised NetCDF,
CF-compliant format, making handling and analysis quicker and easier for users.

2) As well as being inserted into the UM-UKCA workflow, the code has optional logical
input that allow it to run as a postprocessing tool, for example to analyse data from
older simulations or to test the impact of different interpolation methods.

3) The code can be easily customised to process any model data (not just UM-UKCA),
therefore making it useful to the wider atmospheric science community.

a)

b)

Figure 1. a) shows a schematic of the UM workflow indicating where the flight track simulator step fits:
flight_track_sim reads input variables and logicals provided by the user through the Rose GUI and runs the
python script UM_to_flightrack.py; b) shows the UM run-time control GUI for an example run which includes
the flight_track_sim step: these include running the main UM-UKCA code (atmos_main), interpolating model
output on predefined flight tracks (flight_track_sim), data handling and archiving (postproc) and deleting files
from the user workspace (housekeeping). Grey colours indicate that a task has been completed, green shows a
task that is running and blue shows tasks that are awaiting to run.

3. Changes to the UM Rose suite
This section describes in more details how the flight-track simulator code is embedded into
the UM-UKCA workflow.

We created a new Rose/Cylc app, ‘flight_track_sim’, which reads input variables and logicals
provided by the user through the Rose suite GUI. File changes required to include
flight_track_sim into a UM Rose suite are described below:

1) Create a new directory within the UM runid directory,
roses/$runid/app/flight_track_sim (where $runid is the UM job identifier, eg u-
co561). This directory contains a rose-app.conf file and a bin subdirectory containing
the python script UM_to_flightrack.py.

2) rose-app.conf defines input variables and launches UM_to_flightrack.py. An example
of rose-app.conf file is shown below:

 [command]
default=python3
${UM_data_dir}/../../../app/flight_track_sim/bin/UM_to_flightrack.py --outdir
= ${Additional_output_dir} --inputdir = ${UM_data_dir} --trackdir =
${Flight_dir} –ppstream = ${hourly_data_ppstream} --jobid = ${jobid} --
date = $YEAR_MONTH batch --archive_hourly = ${archive_hourly_ppstream}

 [env]
 Additional_output_dir=/work/n02/n02/mrr32/Flight_output/

 Flight_dir=/work/n02/n02/mrr32/AeroCom_flight_track_source/
 UM_data_dir=$DATAM/
 archive_hourly_ppstream=True
 hourly_data_ppstream=l
 jobid=$RUNID

3) The UM_to_flightrack.py file can be downloaded from GitHub
(https://github.com/MariaRusso/CF-CIS-Iris_python_tools) and copied to
roses/$runid/app/flight_track_sim/bin/.

4) Include a flight_track_resource ‘block’ in roses/$runid/site/archer2.rc. See below,
which shows the added text highlighted in blue:

 [[PPBUILD_RESOURCE]]
 inherit = HPC_SERIAL
 [[[job]]]
 execution time limit = PT5M

 [[FLIGHT_TRACK_RESOURCE]]
 inherit = HPC_SERIAL, RETRIES
 [[[job]]]
 execution retry delays = PT5M, PT5M, PT10M, PT10M
 execution time limit = PT1H

 [[POSTPROC_RESOURCE]]
 inherit = HPC_SERIAL
 pre-script = """module load postproc
 module list 2>&1
 ulimit -s unlimited
 """

5) Modify roses/$runid/suite.rc by adding the highlighted text as shown below:

{# Command for UM must make sure using main executable #}
{% set UM_TASK_RUN_COMMAND = TASK_RUN_COMMAND ~ ' --
path="share/fcm_make_um/build-*/bin"' %}

{# Set rose date command and associated print-format options #}
{% set ROSEDATE = "rose date -c --calendar=" ~ EXPT_CALENDAR %}
{% set PFMT_YR = "--print-format='%Y'" %}
{% set PFMT_FLIGHTMONTH = "--print-format='%Y%m'" %}
{% set PFMT_MONTH = "--print-format='%Y%b'" %}
{% set PFMT_DUMP = "--print-format='%Y%m%d_%H'" %}
{% set PFMT_UM_PT = "--print-format='%Y,%m,%d,%H,%M,%S'" %}
{% set PFMT_UM_DUR = "--print-format='y,m,d,h,M,s'" %}

{# Set jinja2 variables based on values from rose-suite.conf file #}
{% set CONFIG_OPT = '(' ~ EXPT_CONFIG ~ ') (' ~ EXPT_HORIZ ~ ') (' ~
EXPT_CALENDAR ~ ') ' ~ EXPT_AEROSOLS %}

…………
 {# Set up cycling graph #}

 {% set RESUB_GRAPH = '' %}
 {% set RESUB_GRAPH = RESUB_GRAPH ~ 'flight_track_sim => ' %}
 {% set RESUB_GRAPH = RESUB_GRAPH ~ 'postproc => ' if TASK_POSTPROC else
RESUB_GRAPH %}
 {% set RESUB_GRAPH = RESUB_GRAPH ~ 'pptransfer => ' if TASK_PPTRANSFER else
RESUB_GRAPH %}
 {% set RESUB_GRAPH = RESUB_GRAPH ~ 'supermean => ' if TASK_SUPERMEAN else
RESUB_GRAPH %}
 {% set RESUB_GRAPH = RESUB_GRAPH ~ 'rose_arch_logs => ' if TASK_ARCH_LOG else
RESUB_GRAPH %}
 {% set RESUB_GRAPH = RESUB_GRAPH ~ 'housekeeping' %}

 [[[{{EXPT_RESUB}}]]]
 graph = atmos_main => {{ RESUB_GRAPH }}
…………

 [[atmos_main]]
 inherit = RUN_MAIN, ATMOS_RESOURCE, ATMOS
 post-script = save_wallclock.sh {{EXPT_RESUB}}

 [[fcm_make_pp]]
 inherit = RUN_MAIN, EXTRACT_RESOURCE
 [[fcm_make2_pp]]
 inherit = RUN_MAIN, PPBUILD_RESOURCE

 [[flight_track_sim]]
 inherit = RUN_MAIN, FLIGHT_TRACK_RESOURCE
 pre-script = '''
 export PATH=/home/n02/n02/mrr32/miniconda3/bin:$PATH
 export
UDUNITS2_XML_PATH=/home/n02/n02/mrr32/miniconda3/share/udunits/udunits2.xml
 '''
 [[[environment]]]
 ROSE_TASK_APP = flight_track_sim
 YEAR_MONTH = $({{ROSEDATE}} {{PFMT_FLIGHTMONTH}})
 CYCLEPERIOD = {{EXPT_RESUB}}

 [[POSTPROC]]
 [[[environment]]]
 CYCLEPERIOD = {{EXPT_RESUB}}

4. Description of UM_to_flightrack.py
UM_to_flightrack.py performs the following steps:

1) Read air pressure and campaign name from flight track files, using CIS python
libraries.

2) Read all model variables and Heaviside functions on model pressure levels, from
hourly UM-format files, using cf-python libraries, and remove grid points for which
the Heaviside function is zero.

3) Colocate model variables onto flight track (using CIS python libraries).
4) Write daily NetCDF file containing model variables colocated onto flight track (using

CIS python libraries).
5) Read daily NetCDF files and write monthly NetCDF, CF-compliant files (one file per

model variable per month).
6) If archiving of hourly UM-format files is set to False, delete hourly files before the

postproc step.

4.1 Input
Command line arguments
The flight track simulator app, fligh_track_sim, provides input variables from the Rose GUI
and invokes UM_to_flightrack.py parsing such variables as command line arguments. A list
of input variables required to run UM_to_flightrack.py, their description and usage is shown
in Table 1.

ARGUMENT DESCRIPTION
-i --inputdir Directory_in Directory_in is the full path to the directory containing hourly pp files
-t --trackdir Directory_ft Directory_ft is the full path to the directory containing flight track files
-d --cycle_date YearMonth YearMonth is a six digit tag to identify the start time of the analysis
-n --n_months N N is the number of months to process from/including YearMonth (optional; default 1)
-r --runid UM_jobid UM_jobid is the unique identifier associated to a UM integration

-p --ppstream Single_char Single_char is a single character identifying the hourly data ppstream as defined in
Rose, e.g. k

-m --method Interpolation Interpolation is “lin”/“nn” for linear or nearest neighbour interpolation (optional;
default lin)

-c --climatology True/False True produces a multi-year climatology for each flight (optional; default False)
-o --outdir Directory_out Directory_out is the location to write output NetCDF files (optional). If batch is

selected, output files are always written to Directory_in and additionally copied to
Directory_out if present. If postprocessing is selected, output files are written to the
current directory (./) or to Directory_out if present)

batch Indicates the python script is running within the UM run-time workflow
-a --archive_hourly True to archive hourly files instead of deleting them (optional; default True)

postprocessing Indicates the python script is running outside the UM run-time workflow
-s --select_stash Code Code is a list of stashcodes to be processed (optional; default = process all)

Table 1. Description of command line arguments used to run UM_to_flightrack.py

A subparser argument, ‘jobtype’, is used to indicate whether the code is running within the
UM-UKCA run-time workflow (if ‘batch’ is selected) or as a standalone postprocessing tool,
eg on existing model data, (if ‘postprocessing’ is selected). These subparser arguments also
unlock specific conditional arguments: --archive_hourly can be used only if ‘batch’ is
selected and --select_stash can only be used if ‘postprocessing’ is selected.

Input files
Suitable formats for model input are NetCDF, UM pp format and UM fieldsfile format, while
input files containing flight track information are required to be in NetCDF, CF-compliant
format. The ability to read different formats of model input files gives extra flexibility to the
code as it allows to read other model data as well as UM-UKCA data.

4.1 Code Optimisation
There are several python libraries that can deal with reading/writing of large, gridded data
files (e.g. CIS, cf-python, Iris [12] etc.). The choice to use CIS python libraries stems from
their ability to handle ungridded data (such as data on a flight track) and the ease of
performing colocation from gridded to ungridded data. However, preliminary tests showed
that reading model input files using CIS was significantly slower than reading the same file
with Iris or cf-python. For a typical climate resolution file, containing 24 hourly values for 7
variables on 19 vertical levels, read times where ~30 minutes for CIS, ~6 minutes for Iris and
~30 seconds for cf-python. Given that potentially many such files would need to be read in
each model month, using CIS to read model data would be unfeasible. For this reason, cf-
python was chosen to read the model data. However, CIS and cf-python use very different
data structures for the gridded variables they read. In order to overcome this problem, a
python function was developed to convert the cf-python gridded data structure to the CIS
gridded data structure. This work was then extended to produce similar functions which
convert cf-python gridded data structure to Iris or xarray data structure. These functions are
more widely useful as they allow users to efficiently read large datasets using the fast cf-
python libraries and then convert to the desired gridded data structure to interface with
python code using CIS, Iris or xarray libraries. These functions can be found in the
convert_CFvars.py python module available on GitHub (https://github.com/MariaRusso/CF-
CIS-Iris_python_tools).

Since reading model data and dividing by the Heaviside function are the slowest steps in
UM_to_flightrack.py, we further optimized the code by only reading model days for which a
flight track input file exists.

4.2 Output
The model data output on flight track is generated in a NetCDF, CF-compliant format. The
size of monthly output generated by UM_to_flightrack.py depends on the number and size
of the flight track files on which the model data is colocated and therefore can vary each
month.
Figure 2 shows an example of comparison between modelled ozone and ozone measured by
the FAAM research aircraft in Jan 2010. This type of comparison can help to identify and
improve model biases.

Figure 2. Comparison between observed (left) and modelled (right) ozone for 12 flights in January 2010.

Analysis of ozone as a function of air pressure is shown in Figure 3: the largest bias between
UKCA and FAAM ozone is found for air pressure values lower than 400 hPa (or altitudes
greater than 7-8 km); such pressure values are close to the tropopause for mid-latitude
winter months and therefore the high modelled ozone bias could be due a model
underestimate in tropopause height, leading to modelled stratospheric ozone being
sampled.

Figure 3. Comparison between modelled and observed ozone for one flight on 18th of January (left) and all
flights in January 2010 (right).

5. Conclusions
The ability to sample Unified Model output along observed flight tracks allows for better
model evaluation. However, to do this usually requires the processing of large volumes of
high frequency gridded model data. By interfacing with the CIS python library, we are able
to automate this step, greatly reducing post-processing time and the volume of data that
needs to be saved following a model simulation. This method is also transferable to other
atmospheric models, and the code is provided on GitHub under an open-source license. The
use of the cf-python library to read-in the UM-format files significantly decreases the time
take to read these files when compared to the Iris or CIS libraries.

6. Code availability
The code is available under a permissive BSD-3 license. See link for details:
https://github.com/MariaRusso/CF-CIS-Iris_python_tools

Acknowledgements
This work was funded under the embedded CSE programme of the ARCHER2 UK
National Supercomputing Service (http://www.archer2.ac.uk).

References

1. The United Kingdom Chemistry and Aerosol model: https://www.ukca.ac.uk/
2. The Met Office Unified Model:

https://www.metoffice.gov.uk/research/approach/modelling-systems/unified-
model/index

3. Archibald, A. T., et al.: Description and evaluation of the UKCA stratosphere–
troposphere chemistry scheme (StratTrop vn 1.0) implemented in UKESM1, Geosci.
Model Dev., 13, 1223–1266, https://doi.org/10.5194/gmd-13-1223-2020, 2020.

4. Mann, G. W., et al.: Description and evaluation of GLOMAP-mode: a modal global
aerosol microphysics model for the UKCA composition-climate model, Geosci. Model
Dev., 3, 519–551, https://doi.org/10.5194/gmd-3-519-2010, 2010.

5. Archer-Nicholls, S., et al.: The Common Representative Intermediates Mechanism
Version 2 in the United Kingdom Chemistry and Aerosols Model, Journal of Advances
in Modeling Earth Systems, 13, e2020MS002420,
https://doi.org/10.1029/2020MS002420

6. Weber, J., et al.: Improvements to the representation of BVOC chemistry–climate
interactions in UKCA (v11.5) with the CRI-Strat 2 mechanism: incorporation and
evaluation, Geosci. Model Dev., 14, 5239–5268 (2021).
https://doi.org/10.5194/gmd-14-5239-2021

7. Telford, P. J., et al.: Implementation of the Fast-JX Photolysis scheme (v6.4) into the
UKCA component of the MetUM chemistry-climate model (v7.3), Geosci. Model
Dev., 6, 161–177, https://doi.org/10.5194/gmd-6-161-2013, 2013.

8. The Community Intercomparison Suite: http://www.cistools.net/
9. cf-python: An Earth Science data analysis library that is built on a complete

implementation of the CF data model. https://ncas-cms.github.io/cf-python/
10. Rose: a framework for managing and running meteorological suites.

https://github.com/metomi/rose
11. The Cylc general purpose workflow engine. https://github.com/cylc/cylc-flow

12. Iris: A powerful, format-agnostic, community-driven Python package for analysing
and visualising Earth science data. https://scitools-iris.readthedocs.io/en/stable/

