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Abstract

Firedrake [1] is a system for solving partial differential equations using finite
element methods. In this work we enhance the I/O checkpointing capabilities of
Firedrake introducing a new interface. The new interface allows for saving and
loading functions representing fields in association with meshes of the domain, with
domains in the same HDF5 file. The I/O is efficient and scalable, and allows saving
and loading on different numbers of MPI processes.

1 Introduction

Firedrake [1] is a high-level, high-productivity system for the specification and solution
of partial differential equations (PDEs) using the finite element method. The core data
structures used to represent solutions of PDEs are the combination of a mesh of the
domain of interest and a function belonging to some discrete function space. Although
computation is fully and transparently parallel once a mesh is loaded, Firedrake has long
been missing scalable and flexible I/O checkpointing for meshes and functions.

In this work, we implement a scalable and flexible parallel checkpointing infrastructure
for meshes and functions using the standard HDF5 parallel file format. We introduce a new
class, CheckpointFile, which enables saving/loading meshes and functions collectively
to/from a single HDF5 file taking advantage of parallel filesystems and allow for restarting
and post-processing on a number of processes appropriate to that phase of the simulation.
We also provide transparent interfaces for extruded meshes and time-dependent problems.

In Sec. 2 we explain the concept for checkpointing meshes and functions. In Sec. 3 we
illustrate example usages of the new interface. In Sec. 4 we evaluate our implementations
on Archer2. Sec. 5 summarises this work.
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2 Technical details

2.1 Checkpointing meshes

Firedrake uses parallel mesh data structures called DMPlex [2, 3, 4] provided by the
Portable, Extensible Toolkit for Scientific Computation (PETSc) [5, 6] to describe mesh
topologies. A DMPlex represents mesh entities such as vertices, edges, faces, and cells,
which we will call points, and the connectivities between them, such as which faces are
adjacent to a given cell. This adjacency relation is embodied in a directed acyclic graph
(DAG), referred to in mathematics as a Hasse Diagram [7].
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Figure 1: (a) An example Firedrake mesh; global point numbers associated with the
cells, faces, and vertices are shown. (b) DMPlex representation of the mesh topology; an
example adjacency relation is highlighted, where the cell with global point number 0 is
connected to the faces with global point numbers 2, 10, and 3.

Fig. 1a shows an example Firedrake mesh and Fig. 1b shows the DMPlex representing
the mesh topology, where each point is shown as a global point number that we will in-
troduce shortly. Using this flexible representation, Plex is able to manipulate meshes of
any dimension, which any combination of cell shapes, even geometrically non-conforming
meshes with hanging nodes [8]. DMPlex decorates each edge of the DAG with an orienta-
tion number. This identifies the member of the dihedral group for each subcell (face) used
to transform it from the canonical ordering before attaching it to a given cell. The ori-
entation concept will turn out to be crucial in Sec. 2.2. Since a DMPlex also carries mesh
coordinates, checkpointing a Firedrake mesh amounts to checkpointing the associated
DMPlex, and we use the existing PETSc interfaces for this purpose.

In a local mesh, each mesh point (vertex, edge, face, cell, etc.) carries a distinct local
point number in [0, n), where n is the total number of topological points in that DMPlex.
A parallel mesh is simply a collection of DMPlex objects combined with a map relating
points of the mesh on one process to that on another, such as shared vertices along a
process boundary. This map is encoded in an instance of PetscSF [9], a scalable PETSc
implementation of the concept of star forests that allows for moving data from one set
to another in a specified way. For parallel output, we create a global numbering of mesh
points across processes so that each one gets a distinct global point number chosen from
X = [0, N), where N is the total number of distinct mesh points in the collection of
DMPlexes. We save the parallel DMPlex in association with those global point numbers.

When we load a DMPlex, we use global point numbers to reconstruct the saved topol-
ogy. Currently, PETSc can load a DMPlex in parallel only from the XDMF format [10],
but our development hereafter is general and will require no modification when paral-
lel loading becomes available from the HDF5 format in PETSc. Fig. 2 shows the data
loading methodology, where two MPI processes, process 0 and process 1, are in use. In
Fig. 2 we load the DMPlex shown in Fig. 1b as an example and we call the loaded DMPlex
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pointsA 1 5 6 7
atlasDofA 4 1 0 0
atlasOffA 0 4 5 5

vecA 1.01.11.21.31.4

X 0 1 2 3 4 5 6 7 8 910
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plexC 0 5 1 6 2 310
atlasDofC 1 4 0
atlasOffC 4 0 5

vecC 1.41.01.11.21.3
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Figure 2: A schematic of an ex-
ample infrastructure for loading a
PetscSection and a Vec in asso-
ciation with a DMPlex in PETSc
using two MPI processes, process
0 and process 1; data that pro-
cess 0 can “see” are shown in un-
coloured squares and those that
process 1 can see are shown in
darker squares.

plexB. plexB is loaded solely on process 0 representing current PETSc restriction, and
the mesh points of plexB are shown as an array of associated global point numbers. Fig. 2
also shows X, which is partitioned into two; data that process 0 can “see” are shown in
uncoloured squares and those that process 1 can see are shown in darker squares. We
note that X is an abstract sequence of all global point numbers introduced to facilitate
loading Firedrake functions as described in Sec. 2.2 and it is not directly stored in the
file nor is it a loaded object. Here, we modified the PETSc interface so that a PetscSF

object, sfXB, would be constructed when loading plexB; sfXB is to move data from the
partitioned sequence of global point numbers, X, to the serial distribution in plexB based
on the matching global point numbers, and the data flow is illustrated with arrows in
Fig. 2. Note that one can readily compose multiple PetscSFs to move data successively.
Loaded DMPlexes often have poor parallel distributions since chunks loaded from disk
rarely correspond to good partitions. We thus redistribute plexB across MPI processes
to obtain a redistributed DMPlex, plexC; in Fig. 2 points of plexC are again shown as
an array of associated global point numbers. Redistribution constructs another PetscSF,
sfBC, which allows for moving data from plexB to plexC; the corresponding data flow is
depicted in Fig. 2.

2.2 Checkpointing functions

Given a Firedrake mesh holding a DMPlex, Firedrake defines a finite element function
space using a UFL element, a symbolic representation of a finite element provided by
the Unified Form Language (UFL) package [11]. A Firedrake function is then defined on
the finite element function space. In order to describe the data layout of the function
in PETSc, Firedrake creates a PetscSection object that associates the function space
degrees of freedom (DoFs) with the DMPlex mesh points; a PetscSection is just a map
from integers, here the mesh points, to sets of integers, here the global DoFs. For each
mesh point, the section stores the number of DoFs associated with that point in its
atlasDof array. Given a traversal order of the topological points, PetscSection then
defines the order of the DoFs and stores the offset to the first DoF on each point in its
atlasOff array. A PETSc Vec object associated with the PetscSection then stores DoF
values of the function, at indices computed from the atlasDof and atlasOff arrays. A
key feature of this new I/O scheme is the ability to save and load PetscSections and
Vecs in association with a DMPlex on which they are defined, using an arbitrary number of
MPI processes. Saving a PetscSection amounts to saving the atlasDof and atlasOff
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arrays along with an array of associated global point numbers constituting the domain
of the mapping. A Vec object is then saved in association with the PetscSection. For
Firedrake, we have in addition enough information to reconstruct the particular UFL
element used.

Loading the PetscSection amounts to loading the atlasDof array, the atlasOff

array, and the array of global point numbers, which are partitioned into equal chunks
across MPI processes. These arrays are denoted atlasDofA, atlasOffA, and pointsA, and
they represent the in-memory copy of the on-disk PetscSection, here called sectionA.
The Vec is loaded and partitioned independently, and we here denote it vecA. Fig. 2
shows a general example, where mesh points with global numbers 1, 5, 6, 7 have 4, 1, 0,
0 DoFs, respectively, and values of DoFs on the first two are [1.0, 1.1, 1.2, 1.3] and [1.4].
We then use pointsA to construct a PetscSF, sfAX, that moves data from pointsA to
the layout specified by X. Composing sfAX, sfXB, and sfBC, one can construct another
PetscSF, sfAC, that directly moves data, atlasDofA and atlasOffA, from pointsA to
the layout specified by plexC; we denote the arrays thus constructed in reference to plexC

as atlasDofC and atlasOffC, respectively. Fig. 2 depicts construction of atlasDofC and
atlasOffC. These arrays contain the number of DoFs that each mesh point in plexC has
and the offset in vecA of the first DoF on that point. This allows us to construct a new
PetscSF that moves data in vecA to vecC, a new Vec defined on sectionC; see Fig. 2 for
illustration of the data flow.

In addition to the above we load the UFL element for a full description of the function
space. While DoF values on a given mesh point are stored in a contiguous chunk of the
Vec, how these DoFs are laid out in space, meaning how they map to members of the dual
space, cannot be determined without additional knowledge of the element. For functions
on CG and DG spaces, we handle this directly by making Firedrake explicitly define the
DoF layout on each point based on the canonical orientation of that point determined by
PETSc (see Sec. 2.3). This allows one to checkpoint those functions natively. Functions
on other function spaces are first embedded from the original spaces to the DG spaces
of appropriate polynomial degrees, then saved and pushed back from those spaces to the
original spaces when loaded.

2.3 Orientations

Defining the DoF layouts of CG and DG finite elements based on the canonical orientations
of entities is essential for checkpointing functions as described in Sec. 2.2, but it in turn
necessitates Firedrake to explicitly handle how DoFs on a reference element, provided by
the FIAT [12] or FInAT [13] packages, map to those on a given mesh entity for these finite
element spaces.

Each entity on a FIAT/FInAT reference cell has a canonical orientation based on which
DoFs on that entity are laid out. As, for the relevant finite elements, Firedrake lays out
DoFs on a given mesh entity based on the DMPlex canonical orientation, the mapping of
the reference DoFs to the physical DoFs is determined by how the mapped reference cell
entity is oriented relative to the target mesh entity, which is simply called orientation and
represented by an integer. For instance, a triangular cell can have six possible orientations.
DoF mappings must then be defined for each entity for each possible orientation. For CG
and DG elements, those DoF mappings are represented by permutations and we have
implemented those in FIAT and FInAT.

Fig. 2.3 shows an example. Fig. 3a depicts the DoF layout of the DP3 reference finite
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Figure 3: DoF layouts for
DP3 element on (a) the
FIAT reference cell, (b)
the FIAT reference cell

rotated once
”counterclockwise” to

match the mesh cell, and
(c) the mesh cell.

element on the reference triangle in FIAT and Fig. 3c depicts the canonical DoF layout
on a certain mesh cell for the DP3 function space. If the FIAT reference cell is mapped to
the mesh cell under a ”counterclockwise” rotation as shown in Fig. 3b, the DoF mapping
for the cell entity for this specific orientation is given by [3, 6, 8, 9, 2, 5, 7, 1, 4, 0], since
it maps Vec values to FIAT values.

2.4 Extrusion

An extruded mesh in Firedrake is a semi-structured mesh that consists of one unstructured
Firedrake mesh, which we will call the base mesh, and one structured direction in which
the base mesh is extruded ; an extruded mesh thus has one higher topological dimension
than the base mesh. Extruded meshes have been used for thin domain problems such as
coastal ocean simulations.

Just as with other meshes in Firedrake, checkpointing an extruded mesh amounts to
checkpointing its topology and coordinates. An extruded mesh topology is defined by
the underlying base mesh topology represented by a DMPlex and the layers parameter
describing number of extruded cells in the extruded direction. The layers parameter can
be an integer for a uniform extrusion across the base mesh or can represent an integer pair
per base mesh cell for a variable layer extrusion; for the latter, the integer pair contains
the first layer index and the last layer index and only extruded cells between these layers
are included in the extruded mesh. When checkpointing the integer pairs defined on each
base mesh cell, we note that the data structure resembles that of a DG0 vector function
of dimension two on the base mesh and use the infrastructure for checkpointing functions
on the base mesh as described Sec. 2.2.

When checkpointing coordinates and functions, one needs to store the UFL element
for the corresponding function space on the extruded mesh. Potentially embedding them
in an appropriate DG space, one can then recast them as functions on the base mesh and
readily save/load them as described in Sec. 2.2.

We finally note that, as the overall DoF layout of a function is, by construction,
unambiguously determined once DoF layout on the base mesh is known, one can readily
compute the DoF mappings from the reference element to the physical element from the
base mesh entity orientations.

2.5 Timestepping

PETSc provides a convenient interface to store a Vec in a time-dependent simulation,
where an additional axis representing the timesteps is added to the HDF5 Dataset for
the Vec. Firedrake wraps this PETSc interface and allows for storing functions with an
additional integer parameter representing the timestep.
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3 Firedrake CheckpointFile API

Listing 1 shows a basic usage of CheckpointFile, where we save/load a mesh, “m”, and
a function, “f”, to/from “a.h5”. The interface for extruded meshes is the same (except
that an extruded mesh must be created), as shown in Listing 2 where we checkpoint an
extruded mesh, “extm”, and a function, “g”, defined on it.

mesh = UnitSquareMesh(8, 8, name="m")

V = FunctionSpace(mesh, "CG", 2)

f = Function(V, name="f")

with CheckpointFile("a.h5", "w") as ck:

ck.save_mesh(mesh) # optional

ck.save_function(f)

with CheckpointFile("a.h5", "r") as ck:

mesh = ck.load_mesh("m")

f = ck.load_function(mesh, "f")

Listing 1: Code example for basic usage.

mesh = UnitSquareMesh(8, 8, name="m")

extm = ExtrudedMesh(mesh, layers=4,

name="extm")

V = FunctionSpace(extm, "CG", 2)

g = Function(V, name="g")

with CheckpointFile("b.h5", "w") as ck:

ck.save_mesh(extm) # optional

ck.save_function(g)

with CheckpointFile("b.h5", "r") as ck:

extm = ck.load_mesh("extm")

g = ck.load_function(extm, "g")

Listing 2: Code example for extrusion.

4 Evaluation

We tested our CheckpointFile implementation for correctness and performance on Archer2.
In the following we fixed the number of processes per node to 128 and the LFS stripe size
to the default value, 1,048,576. The stripe count c is set to -1 (maximum) unless oth-
erwise noted. We also included export FI OFI RXM SAR LIMIT=64K in all our job scripts.
We compiled PETSc for 64 bit integers.

4.1 Correctness

To test correctness, we used a mesh of the unit sphere that contained about 32 million
tetrahedral cells. We first used 32 Archer2 nodes. We loaded the mesh, constructed a
function with DP4 finite element, let it interpolate h=sin(16 · (2π)(x+y+z)), where x, y,
and z are spatial coordinates, and saved it along with the mesh. The L2 norm error of the
interpolation was 0.00378. We then used 64 Archer2 nodes and loaded this function along
with the mesh. The loaded function was compared with a new function interpolating h

with DP4 element on the loaded mesh; the L2 norm error between the loaded function
and the new function was 1.23 ·10−14, which proved that the save-load cycle was virtually
lossless.

4.2 Performance

To test weak scalability for saving, we first ran a benchmark test for HDF5 parallel
output [benchio]. In the benchmark we saved 2.1 million double-precision numbers per
MPI process using 1, 8, and 64 Archer2 nodes and measured the wall-clock times required
for three different LFS stripe counts, c = 1, 4, and -1 (maximum); the result is plotted
in Fig. 4a. Observed bandwidth for c=-1 were 0.59, 0.98, and 0.86 [GiB/s], respectively,
which suggested that saving data of this size was bandwidth limited.
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Figure 4: (a) Weak scalability benchmark test for HDF5 parallel saving on Archer2 [ben-
chio] run on 1, 8, and 64 Archer2 nodes for three different stripe counts, c = 1, 4,
and, -1 (maximum): each process saved about 2.1 million double-precision numbers. For
c = -1, observed bandwidth were 0.59, 0.98, and 0.86 [GiB/s], respectively. (b) Weak
scalability test for Firedrake saving run on 1, 8, and 64 Archer2 nodes with c=-1. For
each case, a tetrahedral mesh and a DP4 function were created so that each process would
own about 29 thousand cells and 1.0 million DoFs. The largest problem with 64 nodes
thus involved a total of 0.24 billion cells and 8.3 billion DoFs. Wall-clock times in second
required for saving DMPlex, Coordinates, DP4 PetscSection, and DP4 Vec are plotted.

We then performed a weak scalability test for Firedrake using 1, 8, and 64 nodes with c

= -1. For each case, a tetrahedral mesh and a DP4 function were created so that each pro-
cess would own about 29 thousand cells and 1.0 million DoFs. The largest problem with
64 nodes thus involved a total of 0.24 billion cells and 8.3 billion DoFs. Wall-clock times
in second required to save the DMPlex, Cordinates, PetscSection for the DP4 function,
and Vec for the DP4 function were measured; these are plotted in Fig. 4b. Overall our
scalability test for Firedrake showed the same trend as the benchmark test. The array
saved in the benchmark test was about twice as large as the Vec for the DP4 function,
while required times for saving these two objects were about the same. We believe that
this is because HDF5 chunk size of PETSc Vec is automatically set to 33,554,431, which
is much larger than 1,048,576, the LFS stripe size that we used. Saving Coordinates

involves saving the coordiante Vec and the associated coordinate PetscSection. Saving
the Coordinates being much faster than saving the DP4 PetscSection and Vec is con-
sistent with that the coordinate PetscSection only stores DoF and offset data for vertex
points on the DMPlex while DP4 PetscSection stores those for all points.

To test performance for loading, we used 8 Archer2 nodes. We refined a three-
dimensional tetrahedral mesh three times, each refinement producing eight times more
cells, and, for each refinement level, we created a function with DP4 finite element;
the largest problem involved about 29 million mesh cells and 1.0 billion DoFs. Wall-
clock times in second required for loading the DMPlex, redistributing the DMPlex, loading
the Coordinates, loading the DP4 PetscSection, loading the DP4 Vec were measured
and plotted in Fig. 5 for each number of mesh cells. As described in Sec. 2.2, loading
PetscSections and Vecs requires data distribution using PetscSF in addition to mere
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Figure 5: Scalability test for Firedrake loading run on 8 Archer2 nodes with c = -1. Tetra-
hedral meshes of four refinement levels were created and a DP4 function was created on
each. The largest problem involved a total of about 29 million mesh cells and 1.0 billion
DoFs. Wall-clock times in second required for loading DMPlex, distributing DMPlex, load-
ing Coordinates, loading and distributing Coordinates, loading DP4 PetscSection,
loading and distributing DP4 PetscSection, loading DP4 Vec, and loading and dis-
tributing DP4 Vec are shown for each refinement level.

data loading, so wall-clock times required merely for loading data are also separately
shown in Fig. 5 for the Coordinates, DP4 PetscSection, and DP4 Vec. Note that
DMPlexes were loaded in serial due to current PETSc restriction. The wall-clock times re-
quired for loading DMPlexes and redistributing them increased linearly as expected as the
number of cells increased. Coordinates, DP4 PetscSection, and DP4 Vec, were, on the
other hand, loaded in parallel and the required time did not increase linearly, indicating
that loading performance for these objects are process count limited at this scale due to
required data distribution by PetscSFs.

5 Conclusions

We have successfully enhanced the I/O capabilities in PETSc and in Firedrake to effi-
ciently save and load functions in association with meshes using arbitrary number of MPI
processes. This also required rethinking the way in which Firedrake handles orientations
for CG and DG finite elements. We have also added transparent interfaces in Firedrake
for extrusion and timestepping problems. We evaluated correctness and scalability of our
implementation on Archer2. In upcoming work, the HDF5 mesh loading in PETSc will
be parallelized.

Acknowledgment

This work was funded under the embedded CSE programme of the ARCHER2 UK Na-
tional Supercomputing Service (http://www.archer2.ac.uk).

8



Code availability

The version of Firedrake that can be used to reproduce the results of the experiments in
this paper has been archived on Zenodo [14]. The scripts used to run the experiments are
also available on Zenodo [15].
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