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Abstract

FHI-Aims is a numeric atomic-orbital based electronic structure code to perform density

functional theory calculations and beyond. A proof-of-principle first order response module

was previously implemented based on density functional perturbation theory, but in its

fractured and redundant form it was unmaintanable and largely unused. We have performed

a large-scale refactorisation of this code to provide consistent functionality, to increase

scalability and memory efficiency. The new module framework is well documented and

easily extendable. This is shown by the implementation of a new driver module for electron-

phonon response and by interfacing the module with the distributed matrix library ELSI

and the LibXC library. We further provide showcase applications and performance graphs

on ARCHER2 for the redesigned functionality.

1 Project Objectives and State-of-the-Art

Density Functional Perturbation Theory. For the calculation of vibrational frequen-

cies and phonon band-structures or molecular polarizabilities, the response of the electronic

structure to a nuclear displacement (first order derivatives ∂Hij/∂RI) or to an applied electric

field (derivatives ∂Hij/∂µ) is needed. These derivatives can be calculated in the framework

of density-functional perturbation theory (DFPT) assuming a linear response to the external

perturbation (e.g. lattice displacement, electric field, etc.). While different types of external
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perturbations require different integrals to be evaluated, DFPT sits on top of this as a gen-

eral framework that is valid for numerous response properties (see Figure 1). [1] Following a

density functional theory (DFT) calculation which provides the ground-state electron density

ρ(r), the calculation of a response property involves the calculation of perturbation-specific

properties, before a general DFPT calculation is performed. Similar to the self-consistent-field

(SCF) algorithm that underpins DFT calculations, DFPT needs to self-consistently converge

response properties via the Coupled Perturbed SCF algorithm (CPSCF), such as the density

response ρ(1) (r), the first order response Hamiltonian H(1) and wave function expansion coef-

ficients U (1). This sequence is universal and the only property-specific aspects are integrations

over the relevant perturbation operator (for example during the construction of H(1)). Once

ρ(1) and H(1) are converged, the relevant response properties such as phonon bandstructures,

phonon linewidth [2], or polarizability [3] can be calculated.

FHI-Aims is a numeric atomic-orbital based electronic structure code.[4] The implemen-

tation of DFPT in FHI-Aims is the first all-electron real-space atom-centred implementation

of linear response in a periodic electronic structure code. In its original form it was imple-

mented for atomic response (vibrations and phonons) [5] and electric field response. [3] The

code is a naturally grown community development by several authors. The code featured

heavy code duplication. As shown in Figure 2 multiple run modes for each type of response

calculation existed that duplicate the central coupled perturbed self-consistent field (CPSCF)

routines shown in Figure 1. Runmodes differentiate between periodic, aperiodic, and real-

space supercell calculations as described by Shang et al. [5]. In the latter case, the atomic

displacement response is calculated for the extended crystal volume in terms of local atom per-

turbations, which can be interpolated in reciprocal space to achieve denser Brillouin sampling

than otherwise achievable.[6, 7] Runmodes are further differentiated between conventional full

implementations of aperiodic and periodic cases, runmodes where only 1 response component

is constructed at a time to reduce memory requirements (”reduced memory” in Figure 2), and

runmodes that (partially) employ distributed matrix parallelism via the ScaLAPACK/BLACS

protocol. All these modes were collected in different subfolders (”DFPT <runmode>”) within

the main source code directory of FHI-Aims, with each folder containing copies of the key

matrix evaluation routines whilst the ScaLAPACK/BLACS versions were located within the

general purpose ScaLAPACK wrapper file within FHI-Aims. Additionally, some runmodes

used evaluation routines from other runmode folders, resulting in significant cross-linking.

The aim of this project was to improve the DFPT implementation in FHI-Aims to deliver

a long-term sustainable code framework with consistent functionality. The specific objectives

of this project were:
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Figure 1: Flowchart of CPSCF cycle, which is central to DFPT linear response calculations.

First the ground state density, ρ(r) is calculated during a normal SCF cycle. Then an initial

guess for the first order coefficients, U (1) is provided. The CPSCF cycle begins with the

calculation of the first order density matrix, P (1) which is then mixed with the previous

iteration. The first order electron density, ρ(1)(r) and potential V (1)(r) are calculated before

the first order Hamiltonian, H(1) and U (1) can be calculated. If P (1) is converged, the response

quantities are passed to the respective driver to evaluate the response property. Otherwise the

cycle is repeated until convergence is achieved.

1. Refactorizing the existing DFPT code to achieve long-term sustainability and code effi-

ciency

2. Improve scalability and transferability of DFPT functionality by integration into peta-

and (pre-)exa-scale electronic structure interface ELSI

3. Extend DFPT functionality to support Generalized-Gradient-Approximation (GGA) DFT

functionals and van-der-Waals-compliant exchange-correlation functionals

4. Developing new driver modules for electron-phonon coupling and electronic friction to

enable new scientific applications in energy materials and catalysis

The project was delivered in the period from November 2020 to October 2021. All code
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Figure 2: Original DFPT code in FHI-Aims, featuring heavy duplication of the DFPT infras-

tructure across different modules.

changes that occurred in that time and that are described in this document have been merged

into the main branch of the official FHI-Aims GitLab repository [8] in October 2021 and will

be included in the next release of FHI-Aims.

2 Objective 1: Refactorization of the existing DFPT code

Connor Box has refactored the DFPT code in FHI-Aims according to the diagram shown in

Figure 3. The old infrastructure continues to exist in the original folder structure (labeled

as ”Legacy” in the figure), but will be discontinued over the course of the next 12 months

after rigorous testing of the new code framework. The DFPT calculations are governed by a

central ”linear response wrapper” function that is called after the ground-state Kohn-Sham

DFT calculation. This function can call different application models, which currently include

”electric response”, (polarisability, dielectric function) ”atomic response” (phonon spectra and

molecular vibrations), and electronic friction (electron-phonon coupling) calculations. This

portfolio of options can easily be extended further, as the realised infrastructure serves as well

documented template for future application modules of the central DFPT infrastructure. An

example for a future extension into the central DFPT framework is given in the figure as the

random phase approximation (RPA) functionality, which uses CPSCF to calculate important
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input quantities.

Each application module on the left hand side calls into a central DFPT module (shown on

the right hand side of Figure 3), which performs the universal CPSCF operations and constructs

the required first order response quantities. This module also features the key interfaces to

external libraries. This includes the ELSI library,[9] which is used to enable a restart of

the CPSCF routine by exporting the first order density matrix. Another interface has been

implemented to the LibXC library [10] to enable the calculation of the first order Hamiltonian

for arbitrary LDA, GGA, and hybrid-level exchange-correlation functionals. Routines that

are a significant bottle necks in memory distribution are shaded yellow, whilst routines with

optimised memory distribution (even when Nproc > Nk) are shaded blue. The figure also

depicts routines that currently support 2 spin channels (i.e spin collinear), use_local_index

(for local dense real-space matrices, this reduces memory usage and can improve efficiency,

particularly for large systems) and collect_eigenvectors .false. (for ScaLAPACK-type

calculations, this reduces memory usage signficantly). We note that these features are not

supported for the full real-space supercell approach as described by Shang et al. [5] We

describe the specifics of the supercell approach below in the future work section.

Currently the user interface is still using the legacy keywords to control the driver modules,

however, in the coming months we aim to migrate to new keywords that properly reflect the

new driver and general CPSCF relationship, with keywords that control the CPSCF module

that are no longer specific to the driver used, as well as a consolidation of the keywords general

to atomic response, and general to electric field response. The current keywords to control

the CPSCF are given in Table 1, which are mainly for convergence thresholds, first order

density mixing and restart behaviour. Importantly, the new interface detailed here is not

employed unless DFPT_centralised is set to .true.. A significant amount of error catching

and messages for the user at runtime have been added, whereas the legacy code would often

crash without warning. This makes the code far more useable. We aim to shortly provide a

tutorial for use of the infrastructure on the FHI-Aims Gitlab Wiki page.

The newly refactored infrastructure is significantly more compact and easier to maintain.

The total number of code lines has been reduced by just over 60% for the CPSCF code, with

the newer inteface also including more features. Interfacing to the remaining FHI-Aims DFPT

routines (such as RPA force code) will further reduce the total number of code lines. Specific

runmode cases are now only dealt with at the most bottom level and high level developments

at the level of the CPSCF cycle are decoupled. Each evaluation routine version for the key ma-

trices are held in the same file, so that future developers understand that these are performing

a common task. Additionally, several versions of some routines have been consolidated (e.g
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Figure 3: General code layout of DFPT code within FHI-Aims (excluding the mostly separate

magnetic response implementation which only shares the Pulay mixing routine). Note that

some depicted features may not be present for the supercell approach. “Dense / sparse” refers

to when the full global dense (aperiodics) or sparse (periodics) response matrices are needed,

”Int. points” refers to distribution over integration grid points and ”ScaLAPACK” refers to

scaLAPACK support for distribution of matrices. Mixed coloured regions currently have have

a memory bottleneck for aperiodic systems due to the use of full dense matrices.

the ScaLAPACK version of first order coefficient matrix evaluation handles both atomic and

electric field response). Hosting the ScaLAPACK versions of the evaluation routines in these

files is an additional improvement for future development, as previously these were hosted

within a general ScaLAPACK wrapper within FHI-Aims which is completely independent of

DFPT calculations. Matrix construction routines for BLACS distributed response matrices

were hardcoded for the specific response matrix, and so there were many repeats of essentially

the same routine within the general ScaLAPACK wrapper. Now we have created a single file

hosting general matrix constructions that is called many times within the CPSCF and driver

infrastructure, this further improves readability and maintainability.
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Table 1: User controlled parameters. The default of DFPT centralised will soon be changed.

Variable Type Description Default

DFPT_sc_accuracy_dm real Accuracy threshold for P (1). Dif-

ferent units for Atomic vs Efield re-

sponse

1e− 3

DFPT_mixer string Type of mixer employed (linear and

pulay supported). Linear just sets

dfpt_pulay_steps to 1

pulay

dfpt_pulay_steps integer Number of steps to use in Pulay

mixer.

8

DFPT_mixing real P (1) mixing parameter (linear or

pulay).

0.2

DFPT_restart_read_DM1 logical Whether to read P (1) from a previ-

ously outputted file on the first CP-

SCF iterations

.false.

DFPT_restart_write_DM1 logical Whether to write P (1) every CP-

SCF iteration for every cycle

.false.

DFPT_centralised logical Whether to use this interface

(.true.) or the original H. Shang

interfaces (.false.)

.false.

Array storage

The new DFPT implementation has a unified DFPT module, but still differentiates between

certain runmodes. However, it does so at a lowest function level at which response matrices

are evaluated and integrated. Every first order response array will feature n_dfpt_coords

and atom_dim as leading dimensions, as well as n_spin if appropriate. Reciprocal space dense

matrices are used (with or without ScaLAPACK distributed) for aperiodic systems, whilst

periodics additionally include a mix of real-space sparse matrices. A full list of array dimensions

for each runmode is provided in Table 7 in the appendix.

Every core routine has been developed to calculate a response property to a single pertur-

bation (i.e response for one atomic coordinate or one electric field coordinate). Thus, the core

routines are called within a perturbation loop in a single CPSCF iteration. The CPSCF in-

frastructure has been developed to accept any combination of atomic perturbations or electric

field displacements. Thus it is possible to run a CPSCF cycle for all atomic coordinates or a
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single atomic coordinate. This affords flexibility to the developer. This was also done to make

the code compatible with the legacy-style code where there were ’reduced memory’ and ’full

memory’ options, however, we found the computational overhead associated with calculating

the perturbations in serial (i.e in multiple CPSCF cycles) was negligible compared to the ’full

memory’ run. To reiterate, the only difference is having the perturbation loop inside the CP-

SCF cycle or outside. Thus we have set the default to calculate the perturbations in serial.

All major subroutines and their variations are given in Tables 8 to 12, where red_text rep-

resents subroutines that still belong to the legacy infrastructure, and are yet to be refactored

and integrated in the new interface. This applies to the evaluation of the first order potential

routines, which cannot be easily amalgamated and so will be moved directly in the future.

3 Objective 2: Improve scalability & integration with ELSI

DFT calculations within FHI-Aims feature several different parallelisation strategies. Inte-

grations over potentials, densities or wavefunctions are performed on overlapping radial grids

and the integration grid points are distributed over compute cores. Furthermore, Hamilto-

nian and overlap matrices constructed at different k-points are trivially distributed and solved

independently on different CPUs to achieve efficient Brillouin zone sampling for periodic sys-

tems. These strategies lead to effective scalability in the regime where the number of cores

NCPU < Nk. As the number of compute cores exceeds the number of k-points, further scal-

ability can only be achieved if matrix and vector quantities are distributed over cores and

matrix operations are distributed. In FHI-Aims, this is achieved via BLACS distribution of

matrices and parallel matrix algebra is outsourced to the ELPA/ELSI libraries[9, 11]. During

refactoring, we have enabled distributed matrix algebra for the friction response calculations

and have cleaned and debugged other response modes. Furthermore, the ELSI parallel matrix

I/O module has been integrated for matrix restart functionality.

Capabilities

A rough guide of maximum system sizes that can be calculated with the new infrastructure

for each runmode is given in Table 2, where calculations have been carried out on ARCHER2.

This is indicative of the memory usage for each runmode. In principal, much larger system sizes

can be investigated by underloading each node (to increase the maximum memory available to

each task) but we employ the maximum number of 128 cores for each node in the calculations

with the maximum 2000 MB memory per core for the standard queue.
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Table 2: Rough system sizes achievable for each runmode with DFPT. 4 ARCHER2 nodes,

2000 MB per core, no underloading of nodes. LDA, light basis set. Aperiodic test system was

polyethane, whilst periodic test system was bulk Si. For the latter, a 4× 4× 4 k-grid is used.

For electronic friction calculations we calculate the response for one atom only. * ScaLAPACK

calculation failed for original dielectric infrastructure due to bugs in the legacy code. † refers

to functionality that whilst is implemented, currently is not fully functional, but fixing these

would just be a matter of checking that the array indices are correct. Supercell functionality

currently requires underloading nodes or high memory nodes.

Response Periodicity ScaLAPACK? Max system size, x

Legacy New Legacy New

Atomic 0 No No 218 < x < 338 218 < x < 338

Atomic 3 Yes No† 54 < x < 128 54 < x < 128

Atomic Supercell Yes Yes 0 0

Electric 0 Some No 338 < x < 674 338 < x < 674

Electric 3 Yes* No† 128 < x < 250 128 < x < 250

Friction 0 N/A No N/A 218 < x < 338

Friction 3 N/A Yes N/A 128 < x < 250

Scaling behaviour on ARCHER2

In this section we show the scaling behaviour for calculation of different response properties,

with the calculations performed on ARCHER2. We first show scaling for a response property

where there has been no significant improvement to the scaling, and then another where the

scaling is significantly improved. A single CPSCF iteration takes a similar amount of time

as a standard SCF iteration within FHI-Aims. This can be seen in Figure 4 which compares

the average time per iteration for SCF and CPSCF using the atomic response functionality,

without ScaLAPACK distribution, for a range of polyethylene polymer sizes. Performance of

the new interface and the legacy code does not significantly differ for this runmode.

The CPSCF cycle shows favourable scaling on ARCHER2, in Figure 5 we show the scaling

behaviour with increasing MPI tasks; the total time per iteration has a slope close to −1 when

fit to a power series. The integration of H(1) takes the most time per iteration, but may be

reduced in future by implementation of localised dense matrices (rather than global sparse

matrices), as is done for the ground state SCF in FHI-Aims (see future work section). The

evaluation of the V (1)(r) has the worst scaling with a slope of −0.66, however the prefactor is

very small so this is not expected to dominate in any feasible working range. A comparison
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Figure 4: Average time per iteration for CPSCF (v0.01), CPSCF (legacy code) for the response

to a single atomic perturbation compared to a ground state SCF calculation in FHI-Aims (ver-

sion 210513, GNU compilation), for different numbers of atoms for a carbon chain starting from

methane, building up to polyethylene chains. Structures are generated using Open Babel from

SMILES code and have not been optimised. Calculations carried out without ScaLAPACK

distribution. Light basis and LDA functional was employed. Larger system sizes cannot be

achieved without underloading nodes. 4 ARCHER2 nodes used.

of the scaling for the total time per iteration for the new code and legacy code is shown in

Figure 6. The new code shows significantly improved scaling, due to fixing the ScaLAPACK

implementation, which was otherwise not functioning with the compiled code on ARCHER2.

New restart functionality

It is now possible to restart CPSCF from a first order density matrix file, and output said file.

This functionality should be supported for each response and runmode except for i) supercells

and ii) periodic systems+no ScaLAPACK+real_eigenvectors. The restart functionality uses

parallel matrix I/O implemented in ELSI and the filetypes are ‘.csc’. The number and name

of files depend on the periodicity, the number of spin channels, and the response type. The

files store metadata on the system and calculation, allowing the restart files to be used for

calculations with a different number of MPI tasks. A python parser for ELSI matrix files is

conveniently included within the FHI-Aims code, this will allow users to post-process the first
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Figure 5: Time per CPSCF iteration for evaluation of key matrices as a function of the number

of MPI tasks (cores) used. This is calculated for electric field response of bulk Si with 128

atoms on ARCHER2 with the new interface. The evaluation of H(1) is the most costly for all

number of MPI tasks investigated. A fit to power series is also shown for the total time per

iteration and for the H(1) and V (1)(r) evaluations, we find favourable scaling for all (including

the total time) except for the V (1)(r) evaluation, however the prefactor for this is very small

order density matrix, and in future, all response matrices.

4 Objective 3: Support for GGA and beyond

FHI-Aims standard SCF routines are interfaced with the LibXC library, [10] which provides

access to a wide range of exchange-correlation functionals. The previous DFPT module em-

ployed a small set of hardcoded functionals. We implemented a LibXC interface to the DFPT

subroutines that depend on exchange correlation information. The new DFPT module sup-

ports the use of LDA, GGA, and hybrid functionals for calculation of the response matrices

during CPSCF. However, the driver routines have mixed support for GGA and hybrids and

this is documented in Table 3.
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Figure 6: Comparison of total time per CPSCF iteration for legacy code and new interface

(v0.0.1) for electric field response of bulk Si with 128 atoms on ARCHER2. In the legacy code,

the ScaLAPACK implementation was not functioning on ARCHER2, this was fixed in the new

interface as a result of this work.

Table 3: Current support for GGA and hybrid functionals

Property GGA & hybrid support

CPSCF Supported

Friction tensor Supported

Hessian LDA only

Dynamical matrix LDA only

Polarizability Supported

Dielectric constant LDA & GGA only

5 Objective 4: New driver modules for electron-phonon cou-

pling and electronic friction

Electron-phonon-coupling (EPC)-induced vibrational linewidths and electronic friction prop-

erties for molecules at metal surfaces were already implemented based on finite difference
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response calculations. [12] As part of this project, we have refactored the electronic friction

implementation as a driver to be coupled with the new DFPT framework. This has led to a

significant performance increase and reduction in memory usage. The scaling behaviour for the

finite difference implementation is shown in Figure 7, for two system sizes, the larger of which

was not possible to be calculated in the original framework due to the lack of efficient memory

distribution. Whilst the evaluation of the friction tensor may have an unfavourable scaling,

it is only performed once per calculation and has a relatively low prefactor (comparable to

a single SCF step). Whilst there is still an issue with metallic systems when using DFPT,

(discussed below) the improvements to the friction driver also apply to the DFPT runmode.
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Figure 7: Scaling behaviour for the friction driver using finite difference for CO/Cu(100). We

compare each SCF step and the friction tensor (Λ evaluation, one per calculation). In (a) we

compare with the older code (190506, open symbols) with the current refactored code (210928,

closed symbols). In (b) we use a larger system, which was not possible with the original code.

Calculations performed on University of Warwick Avon HPC system (Dell PowerEdge C6420

compute nodes each with 2 x Intel Xeon Platinum 8268 2.9 GHz 24-core processors; 48 cores

per node; 180 nodes).
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6 Conclusion

In this project, we have performed a substantial rewrite of a large and fractured functionality

in the FHI-Aims software package, namely the DFPT-based calculation of linear response

properties. The new code has clear specifications and offers transparent functionality for

various response properties. We were able to port most functionality from the previous DFPT

code into the new infrastructure. Some previous runmodes were not functional in the old code

and have been repaired. Some functionality is yet to be enabled in the new iterface, but will

be corrected in the coming months. The current working functionality is detailed in Table 4.

Overall, the new interface is far more maintainable and understandable, with a significant

reduction in code duplication. The scaling behaviour in areas has significantly improved due

to fixing the parallelism implementations. A huge improvement to the electronic friction /

electron-phonon coupling driver has been accomplished, including improved scaling, memory

usage, and implementation of DFPT to calculate first order response matrices using the new

interface.

The new code framework has been disseminated via the FHI-Aims Slack channel and the

functionality and merge request were discussed in detail on the FHI-Aims GitLab. While a

number of outstanding issues for future work remain (see related section below), this project has

provided an important starting point that will enable the developer community to address these

issues in the future while retaining robust functionality for most runmodes and compatibility

with most recent code innovations in FHI-Aims.

7 Future work

There are several existing and outstanding issues in the code that are described in Table 5.

We propose possible solutions and detail whether the user is warned about these issues when

running the calculations (code stop or warning message). We hope to be able to address these

in the future or to support other developers to address them.

Random phase approximation (RPA) driver

The current rpa_force code used parts of the legacy DFPT framework to evaluate certain

force components. It should be relatively easy to transfer this application module to the DFPT

interface instead. The driver would need to call the first_order_overlap module in a similar

way to the atomic_response or friction codes. This would require little coding effort and

would ensure RPA benefits from any future developments in the new DFPT framework.
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Table 4: Current working functionality with new DFPT interface. Periodicity refers to aperi-

odic cluster calculation (0), periodic boundary conditions (3), or real-space supercell construc-

tion of the first order response matrices (Supercell) as proposed by Shang et al.[5] Distribution

refers to the parallelisation strategy, where ”ScaLAPACK” refers to distributed matrix alge-

bra.
Response Periodicity Distribution State of functionality

Atomic 0 serial fully functional

Atomic 0 ScaLAPACK Full dense matrices used for integration.

No S(1) ScaLAPACK distribution. Fur-

ther scaling improvements possible.

Atomic 3 serial fully functional

Atomic 3 ScaLAPACK not functional

Atomic Supercell serial not functional

Atomic Supercell ScaLAPACK not functional

Electric 0 serial fully functional

Electric 0 ScaLAPACK Full dense matrices used for integration

Electric 3 Serial fully functional

Electric 3 ScaLAPACK not functional

Friction 0 Serial fully functional

Friction 0 ScaLAPACK Full dense matrices used for integration.

No S(1) ScaLAPACK distribution.

Friction 3 Serial fully functional

Friction 3 ScaLAPACK fully functional

Friction Supercell Serial Not implemented

Friction Supercell ScaLAPACK Not implemented

Supercell approach

For electronic friction in particular, we are (usually) only interested in the response due to

certain atoms not all atoms. Thus, it would be hugely beneficial in terms of memory and wall-

time use to restrict the calculation to certain atoms and their periodic images in the supercell

approach. All aperiodic and periodic non-supercell approaches already support restricting the

response to certain atoms. Currently the electronic friction module is not compatible with the

supercell approach. Currently, the supercell approach does not support spin collinear calcu-

lations, use_local_index or collect_eigenvectors .false.. The latter two options might
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Table 5: Outstanding issues in the code, whether the user is warned at runtime and possible

solutions
Issue Description User warned? Solution

Fractional occu-

pations

Eigenvalue difference goes to zero

in denominator in U (1). A

smearing correction was pro-

posed below, but was not imple-

mented correctly.

Yes Re-implementation of

the numerically stable

smearing fix.

spin

collinear

parts of code don’t support spin

collinear treatment

Yes further extension to

spin collinear treatment

is still under way (90%

done)

Periodic atomic

response

Lacks support for

real_eigenvectors

Yes Can be addressed with

a minor extension.

Inconsistent

variable naming

n_basis and n_states are

mixed in places

No Requires further code

maintenance

use_local_index Not supported for the construc-

tion of BLACS distributed ma-

trices

Yes A simple extension is

required for construc-

tion of BLACS matri-

ces. Unclear what is

required for integration

routines, if anything.

help tackle the significant memory usage of this runmode, due to the large supercell size. A

significantly slow step is solving the eigenvalue problem for the supercell, this might be inter-

faced to ELSI so that the optimum eigensolver is chosen and so the runmode benefits from

any future development on eigensolvers as part of the ELSI project.

Real space matrix use for aperiodic systems

Currently, when performing integrations for aperiodic systems, the global dense matrix is used

which is a memory bottleneck. It would be better to use the global real space matrix (or the

local dense real space matrix).
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Implementing localised real-space matrices

This would enable use of the keyword use_local_index for reduced memory usage for very

large systems. All ScaLAPACKmatrix constructions are based on construct_hamiltonian_scalapack.

To enable the use of use_local_index, sparse matrix constructions need to be modified (fol-

lowing the template of set_sparse_local_ham_scalapack).

Extension of hybrid functionals to driver routines

Though the CPSCF module is capable of calculating response matrices with hybrid functionals,

the driver routines have limited hybrid support. Currently Hessian integration is limited to

LDA only. Electric field response calculations are limited RI_method V (resolution of identity)

whereas RI_method lvl is the safe default.

Output of all response matrices using ELSI

Currently the first order density matrix can be output using ELSI, as well as the first order

Hamiltonian and overlap if using the friction code. We plan to include support for all response

matrices, which will allow convenient post-processing. This is a relatively simple extension of

the existing functionality.
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Appendix

Key variables and arrays for developers

Commonly used variables in the DFPT module that control the CPSCF cycle and evaluation

of the response matrices are shown in Table 6 in the Appendix. Of particular importance

are nuclear_response and dfpt_perturbation_list which should be set in the driver that

is calling this module. The array dfpt_homo_lumo_states enables the manual selection of

limits of lowest occupied and highest unoccupied state between which a sum over states will

be calculated. I stands for integer, F for real float, and L for logical
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Table 6: Important variables in the new DFPT module

Variable Dimension Description Range

nuclear_response L Whether we are calculat-

ing response to Atomic

(True) or Efield perturba-

tions (False)

True/False

n_dfpt_coords I Number of Cartesian di-

rections per atom or for

Efield in this CPSCF cy-

cle

1 – 3

n_dfpt_atoms I Number of atomic pertur-

bations in this CPSCF cy-

cle (0 for Efield)

0 – n_atoms

atom_dim I Length of array dimen-

sion for atomic perturba-

tions. If Efield then set to

1

1 – n_atoms

dfpt_perturbation_list I(n_atoms,3) Map of perturbations be-

ing calculated this CP-

SCF cycle. 1 if calculated.

For Efield we only read

row 1

0/1

dfpt_homo_lumo_states I(n_spin,2,n_k_points) Index of HOMO (1) and

LUMO (2) state for each

spin channel and k-point

1 – n_states

dfpt_supercell L Whether to use supercell

approach for Atomic per-

turbations

True/False

change_of_first_order_DM F Change in P (1) between

successive CPSCF itera-

tions

-
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Table 7: Important array dimensions in different runmodes

System Matrix Dimensions

All ρ(1),V (1) n_full_points

Aperiodic (LAPACK-style) P (1),H(1),U (1) n_basis,n_basis

Aperiodic (ScaLAPACK-style) P (1),H(1),U (1) mxld,mxld

Periodic P (1) n_hamiltonian_matrix_size

Periodic (LAPACK-style) H(1),U (1) n_basis,n_basis,n_k_points_task

Periodic (ScaLAPACK-style) H(1),U (1) mxld,mxcol

Supercell P (1),H(1) n_hamiltonian_matrix_size

Supercell (LAPACK-style) U (1) n_basis_sc_DFPT,n_basis_sc_DFPT

Supercell (ScaLAPACK-style) U (1) mxld_sc_DFPT,mxcol_sc_DFPT

Table 8: Different routines to evaluate first order density matrix, P (1) for different runmodes

Name Input Output ScaLAPACK Cluster Periodic Supercell Collinear

evaluate_DM1 Dense Dense No Yes No No Yes

_scalapack Dense Dense Yes Yes Yes No Yes

_sparse Dense Sparse No No Yes No Yes

_sparse_supercell Sparse Sparse No No (Yes) Yes No

_scalapack_supercell Dense Dense Yes No (Yes) Yes No

_electric Dense Dense No Yes No No Yes

_electric_sparse Dense Sparse No No Yes No Yes

Table 9: Different routines for the integration of first order electron density, ρ(1)(r). None of

the routines are ScaLAPACK-enabled.
Name Input Output Cluster Periodic Supercell Collinear

integrate_rho1 Dense n_full_points Yes No No No

_sparse Sparse n_full_points No Yes No No

_sparse_supercell Sparse n_full_points No (Yes) Yes No

_electric Dense n_full_points Yes No No Yes

_electric_sparse Sparse n_full_points No Yes No No
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Table 10: Different routines for evaluation of first order potential, V (1)(r).

Name Input & Output Cluster Periodic Supercell Collinear

sum_up_whole_potential_p2_shanghui n_full_points Yes No No Yes

_phonon_reduce_memory n_full_points No Yes No Yes

_p1 n_full_points No (Yes) Yes Yes

_dielectric n_full_points No Yes No Yes

Table 11: Different routines for integration of first order Hamiltonian, H(1).

Name Input Output ScaLAPACK Cluster Periodic Supercell Collinear

integrate_H1 Dense Dense No Yes No No No

_sparse Sparse Sparse No No Yes No No

_sparse_supercell Sparse Sparse No No (Yes) Yes No

_electric Dense Dense No Yes No No Yes

_electric_sparse Sparse Sparse No No Yes No No

Table 12: Different routines for evaluation of first order coefficient matrix, U (1).

Name Input Output ScaLAPACK Cluster Periodic Supercell Collinear

evaluate_U1 Dense Dense No Yes No No Yes

_scalapack Dense Dense Yes Yes Yes No Yes

_sparse Dense Sparse No No Yes No Yes

_electric Dense Dense No Yes No No Yes

_electric_sparse Dense Sparse No No Yes No Yes
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