

1 of 9

eCSE Technical Report for ARCHER2-eCSE01-13

Zacros Software Package Development: Towards Petascale Kinetic
Monte Carlo Simulations with the Time-Warp Algorithm
Giannis D. Savva,ab Raz L. Benson,a Ilektra A. Christidi,c David Stansby,c and Michail Stamatakis∗a

a Department of Chemical Engineering, University College London, Torrington place, London, WC1E
7JE, United Kingdom.

b Theory and Simulation of Materials (THEOS), École Polytechnique Fédérale de Lausanne, 1015
Lausanne, Switzerland.

C Research Software Development Group, Advanced Research Computing Centre, University College
London, Gower Street, London, WC1E 6BT, United Kingdom.

* Corresponding author; e-mail: m.stamatakis@ucl.ac.uk

Abstract

Software Zacros employs a graph-theoretical approach to kinetic Monte Carlo (KMC) simulation of
catalytic systems, coupled with the Time-Warp algorithm for parallel discrete event simulation. In
this combined approach, the lattice, representing the catalytic surface, is divided into subdomains,
each assigned to a single MPI process. Each MPI process simulates a trajectory asynchronously
from the other MPI processes, and this inevitably leads to conflicts during the simulation when
reactive events occur at subdomain boundaries. These conflicts are resolved in an exact way in the
Time-Warp algorithm by saving snapshots of the KMC state, which enables roll-backs and re-
simulations until all conflicts are corrected. This eCSE project focused on benchmarking and
improving the Time-Warp implementation in Zacros, thereby delivering insight into how to
optimise the tuneable parameters of the Time-Warp algorithm, as well as reducing the memory
footprint of the implementation.

Keywords: ARCHER2; eCSE; Computational catalysis; Time-Warp algorithm; Discrete-event
simulation; multiscale modelling.

2 of 9

Background

Kinetic Monte-Carlo (KMC) simulations have been instrumental in multiscale catalysis studies,
enabling the elucidation of the complex dynamics of heterogeneous catalysts and the prediction of
macroscopic performance metrics, such as activity and selectivity (1). However, the accessible
length- and time-scales have been a limiting factor in such simulations. For instance, handling
lattices containing millions of sites with “traditional” sequential KMC implementations is
prohibitive due to large memory requirements and long simulation times. We have recently
established an approach for exact, distributed, lattice-based simulations of catalytic kinetics, which
couples the Time-Warp algorithm with the Graph-Theoretical KMC framework in the Zacros
software package, enabling the handling of complex events within large lattices (2). In this eCSE
project, the performance of this implementation was benchmarked as a function of algorithm
parameters, its strong and weak scaling studied, and its memory footprint improved. As a result,
the algorithm was found to scale well for all systems studied, for large enough lattices and number
of processes. A methodology was developed to investigate the optimal algorithm parameters, that
could improve the performance of the algorithm by at least an order of magnitude, depending on
the chemical system simulated and HPC cluster that the simulation is running on. Finally, the
memory usage and footprint of the algorithm has been improved and is now tuneable by the user.

The Algorithm

In order for Zacros to simulate chemical processes in parallel, the catalytic surface is decomposed
into smaller subdomains and the simulation of each subdomain’s history is assigned to a processor.
Since the individual histories are simulated concurrently, events happening at the shared
boundaries between domains can lead to causality violations. These violations are corrected by
means of the Time-Warp algorithm (3), an optimistic approach to Parallel Discrete Event
Simulation, which corrects the histories simulated by the “collaborating” processors up to the
point that the final simulation history reproduces the exact dynamics of the underlying model.

In our MPI implementation of Time-Warp in Zacros (2), we use point-to-point communication
between processors handling neighbouring subdomains, to send asynchronous messages of events
that occurred in one subdomain but affect the simulation history of its neighbour. Since the local
simulation time progresses independently in each process, it is possible that such a sent message
may correspond to the past of its recipient process (thus the causality violation). To resolve this,
each process keeps a history of the local system state at regular time intervals, so that a given state
of the past can be restored in the event of a received message with a timestamp in the past of the
local process. Such a “rollback” event may also require that past messages already sent by the
process to its neighbours be undone, which is achieved by the process sending “anti-messages” to
its affected neighbours. All the processes collectively communicate in regular intervals in order to
establish the overall system simulation time, which is (roughly) the local time of the slowest
process. This information is used for two purposes: to remove elements from state and message
queues that are no longer needed due to being too far in the past, and thus free up memory for
more elements to be stored; and to decide when the simulation is finished due to all the processes
having reached their end time and handled all the messages that have been sent to each other.

Scaling Studies

Three chemical systems were used for benchmarking the parallel implementation of Zacros (2).
System 1 included only adsorption, desorption, as well as a diffusion, which is a two-site event and
leads to coupling between parallel domains since a single event can cross domain boundaries.
System 2 included adsorption, desorption, and nearest-neighbour pairwise lateral interactions,

3 of 9

which lead to inter-domain coupling since the corresponding energetic cluster/pattern can cross
domains. System 3 included several elementary reactions of a complex CO oxidation mechanism as
well as a detailed model of energetic interactions (4), which require large halos and lead to strong
coupling between domains.

Figure 1: Weak (top) and strong (bottom) scaling plots for two different systems simulated with the
Time-Warp algorithm in Zacros (2).

The results of these benchmarks appear in Figure 1. For the calculation of efficiency, we define the
scaled time (t*) as the ratio between KMC time versus real time. The higher this ratio, the faster the
progression of the simulation. For the weak scaling benchmarks, we thus define the efficiency (ηws)
as the ratio between the scaled time of a simulation with nsites distributed over nMP MPI processes,
versus the scaled time of a serial simulation on a lattice of nsites /nMP sites (which is the minimum
number of sites), i.e.:

In Figure 1(a) and (b) we plot the weak scaling efficiency for the parallel as well as the serial runs.
Clearly for the latter the efficiency follows a scaling of approximately 1/nsites, because the
computational effort for reaching a fixed KMC time, scales with the number of sites. Some

()
()min

* :
*
sites MP

ws
sites

t n n
t n

h =

4 of 9

additional inefficiencies are seen in System 2 for large lattice sizes. We observe that the efficiency
of the parallel runs plateaus after some drop at small lattices, which can be attributed to the
increasing use of communications and handling of more messages, as well as the treatment of
causality violations via rollbacks. We also see that a “truly serial” run is slightly more efficient than
a “distributed” run with only one MPI process, due to the MPI-related procedures that are still
invoked in the latter run. In particular, the single MPI process, still checks at every KMC iteration
whether an event involves halo sites (even though there are none in this case); in addition, MPI
subroutines that e.g., probe for messages (even though there wouldn’t be any), or broadcast the
local virtual time (LVT) (to just one MPI process) are still called as usual. Overall, we see
encouraging speedups, e.g., for system 2, the distributed runs being more than four orders of
magnitude faster than serial ones.

For the strong scaling benchmarks, we define the efficiency (ηss) as the ratio between the scaled
time of a simulation with nsites distributed over nMP MPI processes, versus the scaled time of a serial
simulation on the same number of sites, i.e.:

The results of these benchmarks for systems 1 and 2, are in Figure 1(c) and (d). For runs with more
than just one MPI process, we generally observe an improvement in performance as more MPI

processes are employed in our simulations. The number of MPI processes for which a distributed
run starts to outperform the single-MPI-process run depends on the system and the lattice size.
For example, distributed runs with more than 100 MPI processes outperform single-MPI-process
run for all lattices of system 1, while for system 2, runs with 9 MPI processes already outperform

the single-MPI-process runs quite significantly. We also observe that the efficiency plateaus for the
smallest lattice considered (360×360), due to the increasing portion of halo sites. Indeed, as the
number of MPI processes increases, the overall length of boundaries also increases, and so does
the ratio between the number of sites that
belong in halos over the total number of sites.
In turn, the probability that an event will
involve at least one halo site becomes higher,
leading to inefficiencies due to causality
violations and the ensuing roll-backs.

 Finally, in Figure 2, we present results on the
more realistic and more complicated System 3
(developed in Ref. (4)), for CO oxidation on
Pd(111). We observe a steady rise in efficiency
with an increase in the number of MPI
processes, though the speedup is sublinear. For
the largest simulation performed, which
employed 27×27 = 729 MPI processes, we
obtained a speedup by a factor of about 110.
This behaviour is attributed to the large halo
width of this system, which results in frequent
causality violations that must be resolved via
rollbacks.

()
()

* :
*
sites MP

ss
sites

t n n
t n

h =

Figure 2: Results of strong-scaling benchmarks for
System 3, i.e. the detailed CO oxidation model of
Ref. (4), on a 2592×2592 lattice (more than 13.4
million sites) (2).

5 of 9

Parametric Studies

The performance of our parallel KMC implementation broadly depends on the amount of available
memory, the type of data-structure used for storing and accessing these snapshots, and tuneable
parameters that control the frequency of snapshot taking and global communications. Therefore,
the performance as a function of these parameters was extensively studied on the benchmark
systems introduced above. The snapshots of the system saved to each KMC state queue can
occupy large amounts of memory and may need to be accessed frequently, so it is pertinent to
consider the most appropriate data structure for this purpose. Two data structures were initially
implemented in Zacros: the “linked list” and the “vector”. In the former, the nodes (KMC-state
objects) are not necessarily stored contiguously in memory, rather each node points/links to the
next in the sequence. This means that memory can be allocated and deallocated as needed each
time a snapshot is saved or deleted. In contrast, the “vector” has a fixed number of slots in a one-
dimensional array of type KMC state, plus an additional one-dimensional array for indexing
purposes. The memory thus needs to be allocated once and for all at the start of the simulation.

Whichever data structure is chosen, to avoid exhausting the memory available, it is also important
to have a robust protocol by which MPI processes can delete any snapshots that are no longer
needed. This leads naturally to the concept of global virtual time (GVT), tglob, which is defined as
the minimum among all the KMC times and time-stamps of buffered messages (i.e., those sent but
not yet acted upon) across all MPI processes (3). On each MPI process, the earliest KMC state that
could need to be reinstated to restore causality is the last one saved with a time-stamp tstate = tGVT

−state < tglob. All those with tstate <tGVT−state are obsolete and can be safely deleted. Likewise, any
obsolete messages may be deleted from the message queue. In practice, tglob is calculated by
means of a global communication event at regular clock-time intervals of ΔτGVT. Knowledge of tglob
is also used in deciding when to terminate the simulation.

Figure 3: Results of the parametric studies of performance of System 1 with lattice size 1200×1200
distributed over 144 processors (5). The inverse of the KMC-time advancement per unit of clock
time, 1/t*, is plotted against the state saving interval, δsnap (left) and GVT computation interval,
ΔτGVT (right). Lower values of 1/t* indicate higher efficiency.

6 of 9

In Figure 3, we plot the computational time needed for 1 unit of KMC-time advancement (this is
equivalent to 1/t*) for System 1 against δsnap (left) and ΔτGVT (right), for simulations on a 1200 ×
1200 lattice. Note that the left-hand and right-hand plots for each KMC state queue data structure
contain the same data, only presented differently. Regarding the effect of the tuneable
parameters, our first observation is that faster KMC-time advancement is achieved with the vector
data structure than with the linked list, which can be attributed to the additional time spent
allocating and deallocating memory to KMC state queue when the linked list is employed. In
contrast, the size of the vector structure is fixed, and all its needed memory allocated only once, at
the beginning of the simulation. Unsurprisingly, the performance of each KMC simulation is seen
to depend strongly on δsnap. Naively, one may expect a monotonic improvement in performance as
δsnap is reduced, since this reduces the total amount of time spent in rollback propagation. Yet, the
performance is observed to improve only up to a point, upon reducing δsnap. In fact, we observe
optimum performance (i.e., minimum 1/t*) around δsnap = 100 when using the vector state queue
data structure, and slightly higher (δsnap = 200) for the linked list. The sharp rise in 1/t* for smaller
values of δsnap is attributed to the additional time spent saving and deleting snapshots, which
constitute the simulation bottleneck in this regime.

On the other hand, the choice of ΔτGVT hardly affects the overall performance, indicating that the
global communication overhead is negligible. That said, one should refrain from choosing very
small values of ΔτGVT lest the simulation output files occupy vast quantities of disk space. One must
also ensure that, for a given choice of δsnap, ΔτGVT is sufficiently small such that obsolete snapshots
are deleted before the memory allocated to KMC state queue is filled up. This is exemplified by the
several “missing” data points in Figure 3, e.g., all points for which δsnap = 5, ΔτGVT > 10 (ΔτGVT > 2)
are absent with the linked list (vector) KMC state queue structure. A data point is omitted
wherever the KMC state queue in at least one MPI process became too large to fit in the available
memory before the allocated 1 hour of clock time had passed. It is important to stress that the
missing data points just described do not imply failed simulations. This is because, when memory
does fill up, Zacros is configured to “sparsify” the state queue by deleting every second snapshot.
The frequency with which future KMC states are saved is correspondingly reduced by doubling
δsnap. This sparsification procedure can occur, in principle, arbitrarily many times on each MPI
process, such that a poorly chosen input (initial) value for δsnap will not result in simulation failure,
but it will adversely affect performance. In Systems 1 and 2, we found that sparsification tended to
occur either permanently throughout most of the MPI processes, or not at all. This behaviour can
be attributed to the spatial homogeneity of the dynamics, with the upshot that 1/t* for such
simulations is not truly reflective of the input δsnap value since the latter changes during the run.
Thus, we opted to omit the results of any simulations during which sparsification of the KMC state
queue occurred.

Proof of Concept for Large Systems

In order to study the stability and behaviour of the implementation for large number of processes
and long simulation times, a large chemical oscillator system (Brusselator) that exhibits large-scale
pattern formation was simulated (Figure 4). The Brusselator reaction mechanism was introduced
by Prigogine and Lefever in the late 60’s to study symmetry-breaking instabilities in dissipative
systems (6). It involves two main species, one of which promotes its own production in an
autocatalytic manner. This results in rich dynamic behaviour, specifically oscillations, under certain
parametric constraints and assuming fast diffusion (well-mixed system). Furthermore, if the
reaction is embedded into a spatially extended medium into which molecular species can diffuse

7 of 9

(in addition to reacting), an instability occurs when diffusion is slow compared to reaction, and as a
result, the system can exhibit spatiotemporal pattern formation. Such a system was therefore
deemed ideal for demonstrating the capabilities of our distributed KMC approach by reproducing
such spatiotemporal patterns at large scales (7).

The Brusselator system was thus simulated in a lattice with 4000×4000 sites, i.e., 16 million sites
and the simulation was distributed over 25×25=625 PUs, so that each one of them is assigned a
subdomain of 160×160 sites (Figure 4). The entire simulation was run on Thomas, the UK National
Tier 2 High Performance Computing (HPC) Hub in Materials and Molecular Modelling. Because of
the wall time restrictions, this simulation was broken into “chunks” of 24 or 48 hours each. Zacros’s
core implementation provides a functionality for stopping and resuming a simulation, and
consequently, runs that use this checkpointing feature produce identical results with continuous
runs, while being more robust against system faults. The simulation reached an overall KMC time
of about 620 KMC seconds and involved more than 1.6 trillion elementary events (though, due to
the rollbacks of the Time-Warp algorithm, the actual times and number of events executed by the
PUs were larger, as will be discussed later). In terms of real time, the distributed simulation was
running for 38 days.

Figure 4: Snapshots of the fractional coverages of the activator species X* (panels a, b, c) and the
inhibitor species Y* (panels d, e, f) at various times (in units of s) during the simulation. Two spirals
are reproduced rotating in opposite directions (7). At time 413 s, a secondary wavefront emerges
close to the tip of the lower spiral, and eventually pushes the tip closer to the centre of the domain.

Memory Usage Improvements

Early profiling revealed that inter-process communication is not a performance bottleneck for our
implementation. Therefore, the effort was concentrated in improving the single-core performance
via improving the algorithm’s memory footprint. To this end, a memory amortisation scheme was
implemented, by which the main data-structures of the KMC state are allocated conservatively, i.e.

8 of 9

with a small size, at start-up and their sizes are
increased on an “as needed” basis. For
instance, the data-structure that holds the list
of elementary reaction events that can happen
on the lattice, given an adsorbate
configuration, could be initialised with a
number of elements equal the number of
lattice sites. Then, if the number of elementary
events exceeded the size of the datastructure,
the size of the latter would be doubled to store
the additional elementary events. Such size
increases are allowed to happen as many times
as necessary throughout the simulation.

To improve the performance of the KMC state
queues (which are integral parts of the roll-
back machinery of Time-Warp as discussed
earlier), but to also accommodate variable-
sized KMC states we developed two novel KMC
state queue data-structures. The first one,
referred to as optimised linked list, avoids the
continuous allocation and deallocation of slots
holding KMC states, but works with fixed sizes
of KMC states. Thus, instead of deallocating
KMC state slots upon clean-up (after a global
communication event), this data-structure
simply moves them to the end of the queue to be re-used later by copying a new KMC state onto
an obsolete one. The second state queue data-structure, referred to as variable-element linked list,
is also an optimised linked list but with the functionality of storing KMC states of variable size. In
this case, allocation of new KMC state slots is done only if the size of the KMC state increases, due
to the invoking memory amortisation procedures. Obsolete KMC state slots are only deleted if
their size is smaller than that of the current KMC state.

Performance benchmarks of all four KMC state queues is shown in Figure 5. As expected, the
optimised linked lists perform similarly to the vector state queue, since, when all the necessary
slots have been allocated, the queue becomes “static”, no longer performing memory allocation or
deallocation. The “original” linked list is the least efficient due to the continuous memory
allocation and deallocation, while the variable-element linked list exhibits and intermediate level
of efficiency.

Acknowledgements

This work was funded under the embedded CSE programme of the ARCHER2 UK National
Supercomputing Service (https://www.archer2.ac.uk/).

References

1. Pineda M, Stamatakis M. Kinetic Monte Carlo simulations for heterogeneous catalysis:
Fundamentals, current status, and challenges. J Chem Phys. 2022;156(12):120902.

Figure 5: Performance benchmarks of the four
KMC state queues, for System 1 (adsorption,
desorption, diffusion) on lattices of different sizes
distributed over 25 MPI processes. A weak scaling
approach was adopted, i.e., the 200×200 lattice
is run with 2×2 MPI processes, the 300×300
lattice with 3×3 MPI processes, etc. The clock
time per KMC-time advancement, 1/t*, is plotted
against the number of sites for different KMC
state queue data-structures. Lower values of 1/t*
indicate higher efficiency.

9 of 9

2. Ravipati S, Savva GD, Christidi I-A, Guichard R, Nielsen J, Réocreux R, Stamatakis M. Coupling the
Time-Warp algorithm with the Graph-Theoretical Kinetic Monte Carlo framework for distributed
simulations of heterogeneous catalysts. Comput Phys Commun. 2022;270:108148.

3. Jefferson DR. Virtual Time. ACM Transactions on Programming Languages and Systems.
1985;7(3):404-25.

4. Piccinin S, Stamatakis M. Steady-State CO Oxidation on Pd(111): First-Principles Kinetic Monte
Carlo Simulations and Microkinetic Analysis. Top Catal. 2017;60(1-2):141-51.

5. Savva, G. D., Benson, R. L., Christidi, I.-A. and M. Stamatakis (2023). “Large-scale benchmarks of
the Time-Warp/Graph-Theoretical Kinetic Monte Carlo approach for distributed on-lattice
simulations of catalytic kinetics”. Physical Chemistry Chemical Physics, 25: 5468-5478. (doi:
10.1039/D2CP04424B).

6. Prigogine I, Lefever R. Symmetry Breaking Instabilities in Dissipative Systems. II. J Chem Phys.
1968;48(4):1695-700.

7. Savva, G. D., Benson, R. L., Christidi, I.-A. and M. Stamatakis (2023). “Exact Distributed Kinetic
Monte Carlo Simulations for On-Lattice Chemical Kinetics: Lessons Learnt from Medium- and
Large-Scale Benchmarks”. Philosophical Transactions of the Royal Society A, Accepted. (doi:
10.1098/rsta.2022.0235).

