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Abstract  
This paper presents the integration of the discrete exterior calculus (DEC) library ParaGEMS into the 
well-established finite-element (FE) library ParaFEM to accelerate development of geometric 
formulations of solid mechanics. Five miniApps are provided to model scalar diffusion and linear 
elasticity on synthetic material microstructures with emerging discontinuities. The implementation also 
creates the possibility for future tightly coupled FE-DEC simulation of multiscale phenomena within the 
same code. Approximately 80% parallel efficiency is realised on ~8000 cores for a problem involving 
>135 million unknowns, and trends indicate that this efficiency can be further extended to higher core 
counts on larger meshes. 
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1. Motivation and significance 
Failure to accurately predict non-smooth (discrete, heterogeneous, discontinuous) behaviours in 
complex systems leads to over engineering, early replacement, and unexpected failure. The 
consequence is potential injury and loss of life, as well as costing the global economy billions of pounds 
annually. Continuum models describe smooth macroscopic behaviours well; however, by definition they 
cannot accurately represent non-smooth phenomena. Furthermore, zooming into the mesoscopic level 
where these phenomena develop, nature is often organised discretely. For example, observe the 
discrete cellular grain structure of an iron-carbon alloy shown in Figure 1 (left) [1]. In contrast to 
continuum approaches, discrete exterior calculus (DEC) is built on a fundamentally discrete view of the 
world and can mimic the discrete mesoscale structures in nature; see Figure 1 (right). It assigns physical 
properties to different geometric elements - vertices, edges, faces and volumes, which are intrinsically 
linked to their geometry. For example, in solid mechanics: displacements are defined at vertices [m/m0], 
strain occurs along edges [m/m1], stress acts through faces [N/m2], and force densities are in volumes 
[N/m3] [2]. The evolution of these properties is defined by the interaction of adjacent entities, described 
by the topology (connectivity) of the representative mesh. The connections form maps, interpreted as 
exterior derivatives, that enables common vector calculus operations to be mimicked as shown in Figure 
2 [3]. DEC was rigorously developed around fundamental identities such as Stokes’ theorem, therefore 
macroscopic behaviours are also retained [3]. This makes DEC ideal for simulating non-smooth physical 
processes across length scales from the molecular (micro), through to the engineering (macro). 

 
Figure 1 – Grain structure of an iron-carbon alloy (left); synthetic 
grain structure (right). Source (left): www.doitpoms.ac.uk/ 
tlplib/atomic-scale-structure/poly.php?printable=1 [1] 

Figure 2 – de Rham complex. 
 

 
Interest in DEC is growing internationally to describe various phenomena in science and engineering [4, 
5, 6, 2]. However, application to practical problems of interest is limited by the lack of parallel software 
libraries. Recently the authors developed the first parallelised DEC math library, ParaGEMS, tested for 
problems involving scalar transport in cracked media [7]. This paper presents the integration of 
ParaGEMS into the more well-established open-source software finite-element library ParaFEM [8]. The 
aim is to accelerate theoretical development and practical application of DEC by reusing highly 
optimised parallel code for I/O in various formats, partitioning and load balancing, inter-process 
communication patterns and scalable solvers. Furthermore, it will enable reuse of existing ParaFEM 
frameworks for multiscale and multiphysics problems. For example, DEC can be used in place of cellular 
automata [9] or microFE for grainscale modelling. With a sustainable, robust, and efficient HPC research 
platform, there is a unique opportunity to further develop DEC as a disruptive new approach. 
 
The source code for this project, as well as installation instructions, documentation and tutorials is 
available from https://github.com/ParaFEM/ParaFEM and https://github.com/ParaFEM/ParaGEMS. 
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2. Software description 
The DEC library ParaGEMS is an open-source software project with a BSD license developed as part of 
the EPSRC Fellowship EP/N026136/1. The library is written in modern Fortran with MPI parallelism and 
interfaces to BLAS, LAPACK, and PETSc. ParaGEMS has been shown to have excellent scaling for 
problems with >10 million simplices on up to ~1000 cores [7]. 
 
The FE library ParaFEM is also open-sourced with BSD license developed for parallel solution of various 
types of problems, including stress analysis, heat flow, fluid flow, eigenvalue and forced vibrations [8]. 
Similar to ParaGEMS, it is written in modern Fortran with MPI parallelism and includes interfaces to 
BLAS, LAPACK, METIS and PETSc. ParaFEM has been ported to many HPC systems and has excellent 
scaling for problems with >100 million finite elements solved on around 1,000 compute nodes [10, 8]. 
Built-in solvers have been shown to have excellent performance compared with popular packages such 
as PETSc, with significantly more efficient memory usage [11]. ParaFEM was first released in the 1980s 
and has an exemplary track record of sustainability and has been peer reviewed by both the Software 
Sustainability Institute and the H2020 PoP project. It has also created many opportunities for cross-
institutional and international collaborations for multiscale and multiphysics research [9, 12, 13, 14, 10, 
15, 16].  
 
2.1. Library integration and structure of miniApps 
Most numerical simulation codes have modules with similar high-level functionality: 1) data input; 2) 
partitioning and load balancing; 3) initialisation and formation of the numerical system; 4) solution and 
evolution of the system; and 5) data output. However, differences at the lower and more detailed levels 
often creates significant challenges in integrating multiple codes. It often requires data translation from 
one discretisation paradigm and/or data format to another, and sometimes even requires running both 
codes in parallel. However, both FE and DEC operate on meshes of connected and conformal elements. 
Therefore, input and output data are often in a similar formats, similar partitioning and load balancing 
approaches work well, and both approaches ultimately require efficient solution of large systems of 
(potentially nonlinear) equations. Therefore, the approach taken in this project to integrate DEC into 
ParaFEM was to modify only the element contribution to the construction and evolution of the global 
system in existing ParaFEM miniApps. This is significant in two ways: 1) nearly all the development and 
optimisation efforts invested in ParaFEM can be directly leveraged for DEC based simulation; and 2) this 
creates the opportunity for coupled FE-DEC simulation within the same code/solver. 
 
2.2. Element decomposition 
While both FE and DEC operate on connected and conformal elements, DEC principally uses simplicial 
complexes and their Voronoi duals [4]. More complex element must therefore be decomposed into 
simplices. Fortunately, ParaGEMS’ implementation of DEC does not require that simplices are well 
centred – having their circumcenter within the element – therefore this can be done fairly easily. 
 
Common element types in FE include both triangles and tetrahedrons, as well as quadrilaterals and 
hexahedrons, in two and three dimensions, respectively. First order triangles and tetrahedrons are 
simplices and can therefore be used directly with DEC. To facilitate existing ParaFEM workflows, a built-
in element converter between linear quadrilaterals and hexahedrons to triangles and tetrahedrons, 
respectively, was developed. The code operates independently on each element (embarrassingly 
parallel) with appropriate logic in the three-dimensional case to ensure that the decomposition is 
consistent with adjacent elements. This is done by first decomposing each face of the hexahedron 
relative to the minimum diagonal, then splitting the rest of the hexahedron accordingly. Note that in the 
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case of equal diagonals, the inconsistency is not important because the associated terms in the 
formulation will be zero. 
 
2.3. Parallel decomposition 
As mentioned previously, DEC operates on a simplicial complex and it’s Voronoi dual. For this project, 
the Voronoi dual is assumed to represent the material microstructure of interest, as it can recreate 
more complex geometries, and the primal simplicial complex is used to describe the interaction of 
adjacent Voronoi cells. These two complexes overlap, which given that DEC formulations make equal 
use of both complexes, a clean parallel partitioning unclear. MiniApps originally developed for the 
ParaGEMS library partition dual Voronoi cells with additional primal ghost elements along interfaces to 
complete the necessary computations as shown in Figure 3 (left) [7]. In contrast, miniApps developed 
for the ParaFEM library partition FE elements and enforce coupling along the element interfaces as 
shown in Figure 3 (right) [8]. In DEC terms, the ParaFEM partitioning strategy is equivalent to 
partitioning primal simplices (or micro-complexes for quads and hexs – Figure 4) with coupling through 
the middle of Voronoi cells.  Fortunately, the geometric contributions from different simplices to a single 
dual Voronoi cell can be superimposed (summed). Therefore, the integration of ParaGEMS into ParaFEM 
uses the ParaFEM partitioning, treating each simplex or micro-complex in the mesh as its own 
independent DEC complex for the purpose of computing the geometry, then superimposes the 
individual contributions to obtain the coupled result (Figure 4). 
 

 
Figure 3 – Depiction of the partitioning strategies of ParaGEMS with the addition of ghost primal elements along process 
partition (left), and ParaFEM with coupling at element interfaces locally and across processes (right) 
 

 
Figure 4 – The superposition of independent DEC simplexes/micro-complexes converted from FE elements used in the integrated 
ParaGEMS-ParaFEM miniApps  
 
3. Illustrative examples 
Four miniApps were adapted from the textbook “Programming the Finite Element Method” by Smith, 
Griffiths and Margetts [8] to demonstrate the integration of the libraries. The miniApps chosen are 

• p123 – Three-dimensional steady Laplace equation (implicit solution) 
• p124 – Three-dimensional time-dependent heat equation (implicit solution) 
• p125 – Three-dimensional time-dependent heat equation (explicit solution) 



 

5 
 

• p121 – Three-dimensional linear elasticity (implicit solution) 
The adapted miniApps using DEC were relabelled with the ‘pg’ prefix: pg123, pg124, pg125, and pg121. 
A fifth miniApp was also created called pg123x by further modifying pg123 to introduce dual Voronoi 
faces with zero diffusivity. The process is iterative, first identifying dual Voronoi fluxes above some 
predefined magnitude, then setting their diffusivity to zero, and solving again. 
 
The newly modified miniApps were evaluated using the meshes and boundary conditions provided with 
the standard ParaFEM distribution. These meshes are all regular and orthogonal with hexahedral 
elements. To ensure that the simple geometry was not hiding any implementation errors, the miniApps 
for scalar diffusion were also applied to a series of random tetrahedral meshes created with TetGen, 
converted to a compatible format with custom scripts. The numerical results from these simple diffusion 
problems were compared to analytic solutions with the expected levels of error for the respective 
problem, discretisation and mesh density. 
 
3.1. Parallel performance 
All five miniApps developed are extensions of the Laplace equation (pg123) with additional parameters 
for time-dependence (pg124/pg125), material properties (all except pg123), evolution of discontinuities 
(pg123x), and mixed partial derivatives (pg121). Therefore, in this section we evaluate the performance 
of pg123 as both a representative problem and an ideal case. This is justified because the implicit time-
integration (pg124) is formulated as a steady state problem at each time step with a source term related 
to the previous time step; explicit time-integration requires only evaluation of the system (pg125); 
material properties are used essentially to compute a diffusion coefficient (pg124/pg125); and while the 
simplicity of introducing discontinuities is a feature of DEC, the solution is equivalent to a steady solve 
with zero flux boundary conditions on the discontinuous faces. Linear elasticity introduces the most 
significant difference, with the addition of mixed partial derivatives representing shear. This is discussed 
briefly in the following section. 
 
To evaluate the performance of the integrated libraries to solve the Laplace equation, pg123 was 
applied to a series of nested, regular, and orthogonal meshes ranging from 1283 to 5123 hexahedral 
elements. Results from one additional mesh with 6003 hexahedral elements is shown, though it is not a 
member of the nested family described above. The solutions were computed on the ARCHER2 
supercomputer (4 cabinet system) with between 128 to 32768 cores (between 1 and 256 nodes). The 
strong and weak scalings of the simulations are presented in Figure 5, decomposed into the DEC specific 
problem initialisation (left) and the solution of the final linear system (right). Each data point in the plots 
is the average of three runs.  
 
The results show excellent scaling of the DEC initialisation up to 16k cores on the finest meshes with 
>5123 elements. Communication and serial overheads do have a noticeable impact on the scaling of 
smaller meshes at higher core counts. However, the simulation with 2563 elements (the medium size 
mesh) easily fits in memory on a single compute node, meaning that large-scale simulations that densely 
populate the system recover good performance. Furthermore, the trends suggest that this good 
performance may extend for higher core counts if larger meshes are considered. 
 
In terms of the solution of the final linear system, approximately 80% parallel efficiency is retained up to 
8k cores, before beginning to drop off. In this case, the impact of communication overheads is 
noticeable in the weak scaling across all simulations. This may be due in part to the naïve partitioning of 
the domain, which assigns contiguous groups of vertices and elements, sorted by their xyz-coordinates, 
to successive processors. ParaFEM does have integration with METIS, which could be used in the future 
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to investigate the influence of the partitioning on this performance. Either way, it does not appear that 
this is a result of using DEC as the underlying discretisation, as opposed to FE, as shown by the 
normalised strong scaling of pg123 (ParaGEMS+ParaFEM – DEC) and p123 (ParaFEM – FE) on a mesh 
with 6003 elements in Figure 6. 
 

 
Figure 5 – Strong and weak scaling of pg123 divided into the problem initialisation (left) and solution (right)  
 

 
Figure 6 – Strong scaling of pg123 (ParaGEMS+ParaFEM – DEC) and p123 (ParaFEM – FE) solution normalised by solver 
iterations. 
 
3.2. Linear elasticity 
The DEC implementation of linear elasticity has some notable differences to the basic diffusion problem. 
To account for the mixed partial derivatives (associated with shear) mappings must be introduced to and 
from a classical vector field, rather than operating entirely on chain and cochain complexes. This has 
been approximated in the past using local Moore-Penrose pseudo inverses [2]. However, the current 
implementation takes advantage of the regular and orthogonal meshes packaged with ParaFEM’s p121 
example problem to simplify the calculation. Future work could include either implementation of the 
pseudo inverses or, ideally, more theoretical development to eliminate this need all together. We 
expect that the integration of ParaGEMS and ParaFEM presented in this paper will play a role in this 
development. 
 
4. Impact 
Operations in DEC are extremely local and sparse, making it an attractive option for efficient computing: 
an early application of DEC was the efficient simulation of viscous fluid flows for computer graphics [17]. 
In high-performance computing these features can increase problem density on individual compute nodes 
and minimise communication overhead leading to potentially improved performance and parallel scaling. 
The simple matrix structure of DEC operators also facilitates the introduction new and evolving 
discontinuities with minimal modification of system matrices [7]. In FE, for example, the entire system 
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matrix needs to be reformed to account for the change in topology, whereas with DEC only a single row 
and column of the sparse system matrix needs to be modified in the scalar case. 
 
While the focus of this paper is on the integration of geometric and topological functions associated 
with discrete exterior calculus into ParaFEM, many of these functions can also be applied or adapted to 
implement other discrete forms of exterior calculus, such as recent work of Barbetov et al. [18] based on 
Forman’s calculus [19, 20]. Therefore, the integration of these libraries may also have impact in broader 
theoretical research. 
 
The FE library ParaFEM has been shown to be a highly efficient and scalable library with a broad user and 
developer base. It has created many opportunities for cross-institutional and international collaborations 
for multiscale and multiphysics research. The project is timely in that the outputs will support new 
innovations promised by the authors in the recently funded UK Collaborative Computational Project: CCP-
WSI+ (wave-structure interaction plus). CCP-WSI+ brings together two UK communities, cutting-edge 
researchers in both fluids and computational solid mechanics, who will work together to advance research 
into offshore energy generation.  
 
5. Conclusions 
This paper presents the integration of the new discrete exterior calculus library ParaGEMS with the 
more well-established finite element library ParaFEM. Existing ParaFEM miniApps for scalar diffusion 
and linear elasticity were adapted by modifying only the individual contributions from (primal) elements 
in the construction and evolution of the global system matrix. In contrast to FE, DEC also requires the 
use of a dual Voronoi mesh, who’s cells each overlap with multiple primal elements. Fortunately, it was 
observed that the geometric contribution from multiple primal elements to a single Voronoi cell can be 
superimposed. Therefore, each primal element can still be processed independently, as in standard 
ParaFEM miniApps, and summed in the system matrix. DEC requires the primal elements to be 
simplices; therefore, to make broader use of the existing ParaFEM simulation database, a new 
subroutine was developed to convert linear quadrilaterals and hexahedrons to the conformal triangles 
and tetrahedrons, respectively. Running the ParaGEMS-ParaFEM miniApps on the ARCHER2 
supercomputer showed %80 strong parallel efficiency on over 8000 cores, similar to results obtained for 
the FE implementation of the miniApps. The trends also indicate that this could potentially be extended 
for higher core counts on larger meshes. Weak scaling is also excellent in the problem initialisation, and 
comparable to FE in the solution of the linear system. The success of the implementation presented has 
now created opportunities for future investigation of other discrete forms of exterior calculus within this 
framework and coupled FE-DEC simulation of multiphysics and multiscale phenomena.  
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