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Abstract 
 
The R-matrix with Time Dependence code package RMT is a numerical solver for the time-
dependent Schrödinger equation. As such it provides a means for describing the time-domain 
behaviour of atomic and molecular systems driven by external fields. RMT is at the forefront 
of research in attosecond/ultrafast/strong-field physics wherein it is the only code capable of 
describing general systems driven by arbitrarily polarised laser pulses, with a full account of 
the multi-electron correlation. RMT employs the R-matrix division-of-space principle. The 
physical space occupied by the electronic wavefunction is divided into two distinct regions. In 
the inner region, centred on the nuclear centre of mass, multielectron effects are described in 
full. In the outer region, an ionised electron is sufficiently isolated from the residual ion that 
electron exchange with the residual electrons can be neglected. In the small inner region, a 
basis set expansion is used to give an accurate description of the multielectron correlation, 
while in the large outer region the one-electron wavefunction is described on a finite-difference 
grid. This eCSE project has added new levels to the separate existing MPI parallelization 
schemes in the two regions. The inner region parallelization was restricted to at least 1 task 
per component symmetry: it now allows several symmetries per task, so that the number of 
inner region tasks can be much smaller than before in appropriate calculations. The outer 
region parallelization allowed for 1 task per radial sector of grid points. It now allows for several 
tasks per sector, dividing up the wavefunction component ‘channels’ among them. An existing 
option for OpenMP parallelization over channels handled by a task is retained.  Performance 
improvements on ARCHER2 are illustrated, and a systematic approach for choosing the 
correct balance of inner- and outer-region tasks for large and costly calculations is given. 
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(1) Introduction 

The field of attosecond physics (1 attosecond = 10-18 s) has unlocked new realms of 
investigation, beyond what were previously thought to be impenetrable limits: recent 
developments in laser technology have, for the first time, made it possible to observe the 
motion of electrons in real time, as well as control this motion with high precision [1–5]. 
Attosecond physics is a natural successor to femtochemistry [6], and several of its overarching 
aims remain in chemical and even biological systems. Processes as fundamental as vision 
and photosynthesis are driven by light-mediated charge transfer in large molecules [7], while 
photovoltaic cells harness photoabsorption in semiconductors [8]. A key, long-term goal of 
ultrafast physics must be to understand these processes in more than qualitative terms. To 
reach that goal we must first properly understand light-matter interaction at the atomic level. 



 
The rapid advance of laser technology has facilitated myriad new measurement techniques 
able to resolve time-dependent electronic dynamics in complex systems. Our community is 
investigating these phenomena using the world-leading R-matrix with time-dependence code 
(RMT) [9]. RMT solves the time-dependent Schrödinger equation for general multielectron 
atoms, ions and molecules interacting with laser light. As such it can be used to model 
ionization (single-photon. multiphoton and strong-field), recollision (high-harmonic generation, 
strong-field rescattering, [10]) and, more generally, absorption or scattering processes with a 
full account of the multielectron correlation effects in a time-dependent manner. Calculations 
can be performed for targets interacting with ultrashort, intense laser pulses of arbitrary 
polarization. Calculations for atoms can optionally include the Breit-Pauli correction terms for 
the description of relativistic (in particular, spin-orbit) effects [11]. 
 
This eCSE project introduces new parallelism at the basic level to RMT to enable new leading-
edge calculations by our community, and to greatly improve the efficiency of ongoing current 
application calculations. The recent functional extensions to RMT can increase the size of 
calculations by orders of magnitude, and the already complex existing parallel structure of the 
code must be enhanced to deliver current scientific goals efficiently and pave the way for more 
ambitious projects. 
 
 
 

(1.1) Overall Plan of Work 

The RMT code and its applications are described in detail by Brown et al (Computer Physics 
Communications 250 (2020) 107062, reference 11, hereafter called RMT-CPC). We will 
assume familiarity with (or access to) this paper, which the current report supplements, in 
particular the listings of parameters and routines in RMT-CPC sections 3 and 9 respectively. 
The RMT repository [12] is hosted on GitLab, with an expanding number of continuous 
integration features, a test suite, and strict rules for descriptions of code updates. The code is 
supported by detailed comment-based documentation using doxygen, 

The first phase of the project was to introduce a new level of parallelization into the RMT ‘inner 
region’. The RMT code divides the problem into two distinct regions: an inner region (IR), in 
which all electrons are close to the nucleus, and an outer region (OR), in which one electron 
(two in the case of a current extension to treat double ionization) has moved away from the 
nucleus. In the small IR a basis set expansion is used to give an accurate description of the 
multielectron correlation, while in the large OR the one-electron wavefunction is described on 
a finite-difference (FD) grid. In the RMT-CPC implementation a separate efficient parallel 
scheme is employed in each region, but there are two fundamental limits on how well these 
schemes scale which we are seeking to eradicate in this project, as described in sections 2 
and 3 respectively. During the eCSE project, the inner region work was carried out first, 
followed by the introduction a new level of parallelization into the outer region in the second 
phase of the project. The code also contains comprehensive new doxygen commenting, which 
can be used as a more detailed description of localized code changes.  

The rest of this report concentrates on describing the code changes introduced in the project 
and on performance tests, both from the repository test suite and of a size more typical for 
ambitious calculations. The report is intended to be a hands-on guide for RMT users, to enable 
them to make the most of the new coding and parallelization schemes to perform 
computationally efficient simulations. There is no further description of the physics modelled 
by RMT (summarized in CPC-RMT and its references) or the underlying R-matrix theory [9]. 



The coding was tested using both the Cray and gnu compilers on ARCHER2. Timing results 
are for the Cray compiler using –O3 and the default OFI MPI libraries (tests with UCX libraries 
did not show any particular significant improvement). The main results were obtained before 
the change in default CPU frequency from 2.25 GHz to 2.0 GHz. Subsequent testing showed 
that Cray performance was degraded using 2.0 GHz and the --cpu-freq=2250000 flag was 
used to obtain ‘double-checking’ results. An energy use comparison would be a useful follow-
up project. 

 

(2) Inner Region Parallelisation 

In the IR, the problem requires repeated multiplication of the large Hamiltonian matrix with the 
wavefunction vector. The field-free Hamiltonian is of block-diagonal form, with each block 
corresponding to a symmetry of the system, and the laser field introduces field-dependent 
(dipole) interaction blocks which mix the symmetries. The original implementation requires 
at least one MPI task for each symmetry block (called LML blocks after quantum-
mechanical angular momentum quantum numbers L and ML). For some calculations— with a 
small number of very large blocks— we employ multiple MPI tasks per block. However, for 
calculations of atoms driven by long-wavelength, arbitrarily polarised light, we have the inverse 
problem: an enormous number (>10,000) of reasonably small blocks. Given that if for these 
calculations, the bottleneck is the OR, the IR cores (or ‘pes’: processing elements) can actually 
spend the bulk of the execution time sitting idle: e.g. up to 50% in a recent test, amounting to 
a wastage of 60,000 core hours per calculation. This is an extreme example, but it indicates 
the pressing need for this development. Thus, the first goal is to refactor the inner-region 
parallel scheme to allow the assignment of more than one symmetry block to a single 
MPI task. This is illustrated in figure 1 for linearly polarized light (with symmetry blocks labelled 
‘H’ and dipole interaction blocks labelled D). Figures 1-3 of RMT-CPC show examples of more 
complex Hamiltonian structures (e.g. for non-linear polarised light).  

 

Figure 1: Schematic illustrating the inner region MPI task division of wavefunction symmetry 
components in the original scheme (with1 task per block) and new scheme.  

The main kernel of the code’s operation requires components of the wavefunction vector for 
a particular symmetry to be shared via MPI with every other symmetry to which it is coupled. 
Each core (symmetry) holds a list of symmetry indices to which it is coupled, and for each 
index in the list it posts a non-blocking send or receive as appropriate. Each core then waits 
for all of its receives to complete before proceeding to operate on the received data. 



Lb_m_comm and lb_comm  

The inner region MPI tasks are divided into communicators lb_comm (handling a particular 
LML block) with each communicator’s ‘master’ forming a communicator lb_m_comm. The 
original scheme required each LML block to be in a distinct lb_comm. The new parallelization 
scheme allows for multiple blocks per MPI task. While this does not involve introducing new 
communicators, we now have a regime choice in which lb_comm has (default) size 1 and 
several LML blocks can be attached to each member of lb_m_comm. New arrays and shared 
data have been introduced within the lb_m_comm communicator to allow the use of multiple 
LML blocks in lb_m_comm. These are built upon the existing structure. 

A parameter my_num_LML_blocks is generated in module mpi_layer_lblocks, in a new 
routine setup_Lblock_communicator_size_pn which is called from the existing routine 
setup_Lblock_communicator_size if no_of_inner_region_pes < no_of_LML_blocks. 
The user does not have to input anything to choose the distribution of LML blocks between 
tasks. The actual choice of the new distribution is made using an algorithm set out in the 
routine.  

• For linear (z-direction) field polarization in the atomic case, the algorithm aims for as 
even as possible load balancing of numerical work on each task during the main 
propagation.  

• For non-linear (or xy-plane) polarization and the molecular case (and other more 
complicated cases), the algorithm also aims for an even distribution of communications 
between tasks during the propagation.  

A parameter num_av is defined in the latter case as NINT(REAL(no_of_LML_blocks) / 
REAL(no_of_inner_region_pes)) which sets a limit (in practice, num_av + 1) on the number 
of LML blocks that may be included as local to a task. In the former linear polarized case this 
limit is not used. The distribution in both cases uses a summed function of the number of 
elements in the LML blocks to model the associated workload (further details are included in 
the code/doxygen comments), though restricted by the limit in the latter case. This is because 
of the much more complicated block-to-block potential coupling in the latter cases (figures 1-
3 and accompanying text in RMT-CPC). Initial performance testing of the new parallelization 
structure showed this approach is needed, with the communications providing the bottleneck 
in the latter case.  
 
The routine provides diagnostic output from the distribution algorithm and includes limits 
(which can be adjusted or overridden) on deviations from load-balancing, halting the run for 
communicator sizes and input number of tasks in the inner region deemed inappropriate for a 
particular calculation. If the first pass through the algorithm does not assign all LML blocks to 
tasks, or all tasks to blocks, the procedure is repeated with the load-balancing function 
adjusted. The model average workload is formed from a total model workload divided by a 
parameter number_to_divide_by originally set to no_of_inner_region_pes and 
subsequently decreased or increased by 1 respectively on each pass,  with checks to avoid 
oscillations which exit the loop with an assignment of remaining blocks/tasks). In case of an 
exit outside the internal acceptable limits, the program stops and the user has the choice to 
change the number of MPI tasks or override the limits via a check on number_to_divide_by. 
 
if (inner_region_rank == 0) print *, 'number_to_divide_by set to:', number_to_divide_by 
!  if (number_to_divide_by > (no_of_inner_region_pes + (no_of_inner_region_pes / 5))) then 
! number_to_divide_by criterion relaxed here to allow more flexible inner region pe transformations: 



! this means that more preliminary tests can (should) be carried out. 
      if (number_to_divide_by > (no_of_inner_region_pes + (no_of_inner_region_pes / 1))) then 
< run stops> 
and similarly 
if (inner_region_rank == 0) print *, 'number_to_divide_by set to:', number_to_divide_by 
if (number_to_divide_by < (no_of_inner_region_pes - (no_of_inner_region_pes / 3))) & 
      call assert (.false., 'number_to_divide_by is too small, think again')  !  .false. : run stops 
cycle 
 
The setup_Lblock_communicator_size_pn (and setup_Lblock_communicator_size) 
routines are self-contained, so that the choice of distribution of LML blocks among tasks (and 
vice versa) can now be decided using the methods in the routines or alternatively by other 
methods without disturbing the main communication structures. One method being worked on 
following the eCSE project is to allow a combination of many-task-per-LML-block and many-
LML-blocks-per-task using a Huffman tree approach (see, for example, 
https://en.wikipedia.org/wiki/Huffman_coding and https://www.programiz.com/dsa/huffman-
coding) for full automation of the distribution choice: this will be reported separately.    

Once the distribution is decided, the information for efficient propagation of the main 
wavefunction calculation is contained in existing parameters and arrays, with new meaning, 
and some additional arrays. For example, my_LML_block_id now refers to the first LML block 
handled by a task in lb_m_comm and is used in conjunction with my_num_LML_blocks. 
Arrays my_LML_blocks(:), master_for_LML_blocks(:), LML_blocks_per_Lb_master(:) 
contain additional relevant information and are used in modules distribute_hd_blocks, 
distribute_wv_data, live_communications and inner_to_outer_interface, and are set in 
routines setup_colors_for_Lblock_comms and setup_colors_for_Lblock_comms_p (a 
new routine) in mpi_layer_lbocks. Several other modules have minor modifications 
(variables becoming arrays) to allow for the fact that each lb_m_comm task handles several 
LML blocks. Details of the particular block holding the initial ground state and its (row, column) 
position in the now multi-block local storage arrays are used in inner_to_outer_interface and 
wavefunction.  

To fit the existing parallelization, splitting the LML block over lb_comm tasks, without 
disruption of the main propagation code, two new parameters, numrows_sum and 
numrows_blocks, are introduced in module distribute_hd_blocks2 to supplement and 
replace externally the parameter numrows and the use of max_L_block_size.  

• With several LML blocks per task, numrows_sum is the sum of the numbers of rows 
of these LML blocks, rather than the number of rows of the partitioned LML block in 
the many-task Lb_comm case (the parameters rowbeg and rowend are similarly 
modified in the first case).  

• numrows_blocks is defined as max_L_block_size in the original case and is equal 
to numrows_sum (which can be greater than max_L_block_size) in the new case.  

The formulation is needed for arrays which the lb_comm communicator assumes have a fixed 
dimension max_L_block_size in MPI data exchanges.  
 
The main routines (modules in brackets) that required more substantial modification (other 
modules have minor alterations for consistency of parameters) are:  
get_psi_at_inner_fd_pts and get_outer_initial_state_at_b (inner_to_outer_interface), 
part of initialize_wavefunction (wavefunction),  



scatter_dblocks_within_Lblock and get_num_rows_for_local_dblocks 
(distribute_hd_blocks2),  
send{recv}_surf_amps_to_lb_masters,  
setup_and_distribute_dblocks (distribute_hd_blocks),  
and particularly  
scatter_ib_surfamps (distribute_wv_data)  
parallel_matrix_vector_multiply and called routines (live_communications) 
 

The changes to parallel_matrix_vector_multiply are overlaid onto the existing parallelism in 
which relevant parts of off-task wavefunction arrays are received from, and local parts are sent 
to, other lb_m_comm tasks. The received wavefunction components are matrix-multiplied by 
connecting dipole matrices and added to the local parts of the wavefunctions arrays. The 
MPI_irecvs and the corresponding MPI_isends of local data to connected tasks are 
performed first, an MPI_WaitAll allows the data to be put in place, then the arrays are 
multiplied by the field coefficients and the matrix multiplications can take place. The modified 
routines now allow for a loop over local LML blocks in the gather/send section, preceded by 
checks to see whether the connected blocks are local or off-local and whether MPI is needed. 
Multiplication by the field coefficients is now part of the second loop over local LML blocks 
after the data has been transferred to ensure the transferred data are correctly in place, as 
the MPI_WaitAll must now be held back until the first loop over local LML blocks is complete. 
The transferred data arrays have an extra outer dimension over local LML blocks to avoid 
overwriting. This new code restructuring has been thoroughly tested and is rigorous. 

Following the experience of the outer region new parallelization, there is scope for possible 
further reduction in the MPI calls in the case of more intricately linked Hamiltonian blocks (for 
molecules and elliptical polarization). Further checks can be introduced at start-up to see if a 
received non-local wavefunction LML component array section is required for several different 
local LML block interactions (‘up’, ‘down’ or ‘same’ categories), along with the option of bulk 
transfers of several wavefunction components in a single pair of MPI calls. The start-up checks 
would be equivalent to those performed in test_outer_hamiltonian (module 
outer_hamiltonian) but related to inner-region couplings. This refinement work (more 
complicated than the similar outer region set-up) is at an investigatory stage and will be 
reported separately. It will involve introducing expanded storage arrays for transferred data, 
which could be large, and the first loop with the MPI_isend and MPI_irecv commands would 
be performed once rather than up to three times depending on the complexity of the coupling, 
and would involve fewer calls with more data transferred in each call. 

The changes to scatter_ib_surfamps involve modifications to an MPI subarray creation 
which allows the field-free input surface amplitudes (L-block dependent) to be copied and 
distributed among the RMT calculation LML blocks.  An extra dimension was added to the 
subarray and an extra loop over local LML blocks was needed with careful targeting of the 
correct L block for each LML block. 

get_psi_at_inner_fd_pts transforms inner-region matrix rows to outer region channels and 
requires new arrays of rows and channels per LML block and an additional loop inserted into 
the transformation loops.  
get_outer_initial_state_at_b and its calling routine initialize_wavefunction choose the 
correct ground state block (and rows within it) from the correct task, and then share with the 



first outer region (using new outer code as described below for outer region channel 
parallelization).  
send{recv}_surf_amps_to_lb_masters require small 3-component arrays of details of each 
particular local LML block’s position to be sent/received in advance of the main information. 
scatter_dblocks_within_Lblock requires book-keeping and correct distribution of rows of 
combined LML blocks, while get_num_rows_for_local_dblocks sets up the combined 
distribution of rows and numrows_sum/numrows_blocks parameters. 

We may note that the main program tdse and initialisation test program GetProcInfo have a 
minor modification with the integer parameter my_post now an array of size 
my_post_dim_lim (set to 100 in initial_conditions and checked against the actual 
dimension needed in initialise). 

(2.1) Inner region serial optimization 

The introduction of the new parallelization and ongoing testing highlighted a noticeable 
inefficiency in the existing serial code for some of the test cases.  The main compute time is 
taken up with either matrix-vector multiplications (BLAS zgemv), or matrix-matrix 
multiplications (BLAS zgemm) for multiple solutions, numsols, calculated simultaneously. 
The latter option is not always used or needed in application runs (and is a relatively new 
feature). However, it is possible for complex number arithmetic to rewrite the matrix-vector 
multiplication as a matrix-matrix operation for real numbers. This significantly reduces the 
number of floating point operations in RMT for particular (the majority of) multiplications for 
which the matrix (the dipole interaction matrices loc_dblock_<u,d,s> and the boundary 
surface amplitude matrix, now called re_surf_amps) is purely real or imaginary. It is also often 
more efficient in general as the hard-coded implementation of zgemm/dgemm can be more 
efficient than that for zgemv/dgemv (thanks to caching of intermediate data [13]). There is 
also a significant memory-saving advantage and, for smaller calculations, an additional 
caching advantage, as the copying of dipole arrays into complex arrays is no longer needed. 
The penalty is the copying of complex vector arrays into real arrays (real parts followed by 
imaginary parts) with a stride of the size of the array. The routines are in module 
live_communications (in particular parallel_matrix_vector_multiply, which now uses 
dgemm exclusively rather than a choice of zgemv and zgemm) with new array definitions 
backtraced to distribute_hd_blocks and distribute_hd_blocks2 where the dipole and 
surface blocks are allocated. A similar change was made in module 
outer_to_inner_interface in which the real static inner region surface amplitudes are 
combined with the complex dynamic wavefunction derivatives: the derivatives are reordered 
in a temporary real array and dgemm is used, whereas previously the amplitudes were put 
into complex arrays and zgemv/zgemm was used.  

(2.2) Sample test results 

The RMT suite on gitlab includes a set of test cases for both atomic and molecular systems, 
with the atomic tests divided into ‘small’ and ‘large’ tests. The large tests vary in size but are 
not large on the scale of ARCHER2. These tests were mainly carried out to check the accuracy 
of the new scheme: they are not necessarily cases in which the new paradigm results in faster 
execution time, as work previously split between several tasks is now performed by one task. 
We first show results for a selection of four tests using various numbers of inner region tasks 
in the first column (the OR task number is held fixed for each test). As well as the test suite 



samples, we also show IR timing results from a larger case for multiphoton ionization of Xe. 
Timings are either for the whole test simulation or a given number of iterations as indicated. 
Further details of timings from different parts of the inner region process are available from 
timing routines included in the package. The downside of combining several LML blocks on 
one MPI task is that the execution time on that task increases. However, in these tests, the 
superior caching (and reduced number of computations) in the new scheme results improves 
the execution time substantially for Ne+ and Ar_jK. The Ar_jK test with 83 IR tasks increases 
execution time with respect to 169 IR tasks, but the overall cost in CUs is lower. As will be 
shown in section 3, test Ar_LS is dominated by the OR time, as is test Ne for 120 IR tasks 
(with IR time dominating for ~40 IR tasks). 

Ne+:   10 LML (L) blocks, 72 outer pes, full time in seconds (guide) 

Inner region tasks 
Execution time (seconds) 

Original scheme New Scheme 
30 116 115 
10 199 107 
3 635 259 

 
Ne:   71 LML (L) blocks, 72 outer pes, full time in seconds (guide) 

Inner region tasks 
Execution time (seconds) 

Original scheme New Scheme 
120 102 101 
41 171 166 
40 - 180 

 
Ar_LS:  196 LML blocks (405 channels), 164 outer pes, full time in seconds (guide) 

Inner region tasks 
Execution time (seconds) 

Original scheme New Scheme 
196 941 941 
97 944 944 
64 969 965 

 
Ar_jK: 169 LML blocks (1344 channels), 143 outer pes, time in seconds for 1460 timesteps 
(guide) 

Inner region tasks 
Execution time (seconds) 

Original scheme New Scheme 
169 239 239 
83 648 326 
43 1179 651 

 
The sample results for the Xe case concentrate on the inner region timings. In the table below, 
original results, a tenfold reduction in the number of inner region tasks results in a tenfold 
increase in inner region iteration time. The increase with the new sheme results is a factor of 
~5, thanks to the more efficient and memory saving (thus allowing better cache use) new serial 
coding. The overall time for the iteration is dominated by the inner region, even with 1 LML 
block per task. ‘BOUND’ and ‘ARNO’ refer to boundary interactions (with the OR) and the IR 
enacting the Arnoldi update of the IR wavefunction respectively. This case is investigated more 
extensively in section 5. 



 
Xe: 3619 LML blocks (16278 channels), 24*16(tasks)*8(threads) = 3072 outer pes, inner region 
time in seconds per iteration 

IR tasks 
Time (seconds) 

Original Scheme New Scheme 

 ITER BOUND ARNO ITER BOUND  ARNO 

3712 0.21 0.15 0.05 0.163 0.08 0.02 

320 2.0 1.5 0.35 0.88 0.69 0.13 

 

We follow the tables with two figures showing the savings in CUs that the inner region 
parallelisation can provide. These are large test cases for multiphoton ionization of F- and a 
second Xe case (with a more complex description of the target atom). We show the results as 
CUs per iteration against varying numbers of inner region tasks. We will return to these cases 
following the outer region parallelisation. Note that the figures show CUs used per 100 time 
steps of the simulation. This determines the overall efficiency of the run after setup. The 
number of outer-region tasks is fixed for each system as (before the work of section 3) this 
fixes the size of the outer region grid. We may see that for F-, decreasing the number of inner 
region nodes from 20 to 3 improves performance by a factor of ~2.1, while for the more 
complex Xe case, decreasing the number of inner region nodes from 68 to 20 gives a 
performance improvement factor of ~1.6. A reduction in the number of nodes required gives 
a worthwhile performance benefit at the cost of a longer wall-clock time.  

 

Figure 2: ARCHER2 computation cost for various IR node counts and 10 OR node counts, F-    

 



 

Figure 3: ARCHER2 computation cost for various IR node counts and 56 OR node counts, 
Xe (8635 LML blocks). 

 

(3) Outer Region (OR) Parallelisation 

In the OR the physical space is mapped onto a finite difference (FD) grid, and each MPI task 
handles a sub-region of grid points. The description of the electronic wavefunction involves a 
number of coupled electron emission channels, and most of the work in the OR involves loops 
over these channels. The RMT-CPC code includes OpenMP parallelisation over channels, but 
this is limited especially for the largest calculations where the number of channels can exceed 
40,000. Thus, the second eCSE project goal is to implement an additional layer of MPI 
parallelism in the outer region, so that each sub-region may be handled in parallel by 
multiple MPI tasks.   

       

Figure 4: Schematic of the OR MPI division with 1 and 3 MPI tasks per sector. 

Again, this new parallelisation affects a great range of modules and routines in RMT. The new 
parameter number_of_pes_per_sector (default 1) is set in input file input.conf, and checks 
are made on read-in that no_of_outer_pes has number_of_pes_per_sector as a factor. 
The size of the outer grid in sectors (referred to in the codes as outer blocks) is now given by 
no_of_outer_pes / number_of_pes_per_sector. The actual size of the outer region is 
worked out from the number of sectors, the number of points per sector and the grid spacing 
as described in RMT-CPC. The new communicators, which are set in 
init_communications_module_part_two (module mpi_communications), are 
mpi_comm_block, mpi_comm_inter_block and mpi_comm_0_outer_block. The first task 
in each mpi_comm_block (with my_block_group_pe_id = 0) acts as the block master (used 



in mpi_comm_inter_block. mpi_comm_0_outer_block brings together the inner region 
master (the first IR MPI task) with all the tasks in the first outer block and is used for inner/outer 
region communication. When number_of_pes_per_sector = 1, mpi_comm_block has 1 
member and mpi_comm_inter_block is the same as the OR mpi_comm_region.  

mpi_comm_inter_block is defined for all tasks in mpi_comm_block and is used in 
get_fresh_remote_bndries (mpi_communications) to exchange local channel data 
between sectors (get_block_pe_translation_arrays is modified to allow this as detailed in 
comments). Parameters first_block_group_id and last_block_group_id are introduced 
(along with other new parameters) in module communications_parameters. 

The division of channels between tasks in mpi_comm_block is made in routine 
init_my_channels (initialise). If the remainder from dividing number_channels by 
number_of_pes_per_sector is rem, the first rem tasks in mpi_comm_block have one more 
channel than the remaining tasks. Parameters my_num_channels, my_channel_id_1st and 
my_channel_id_last are set, along with arrays counts_per_pe(:), disp_for_pe(:) and 
pe_for_channel(:) which are used in MPI communications. The bulk of the minor changes 
across large numbers of modules/routines is to replace array descriptors such as 
channel_id_1st:channel_id_last with my_channel_id_1st:my_channel_id_last and 
number_channels with my_number_channels/my_num_channels, and modifications to 
sums over global variables (populations, dipole expected values) when these are needed. 
There is also some rewriting in checkpoint.f90, wavefunction.f90 and io_routines.f90 to 
gather or scatter outer wavefunction data and write/read it (by the blocks master) in ordered 
chunks obtained from or sent to each task in mpi_comm_block. The wavefunction files have 
data in a modified order when number_of_pes_per_sector /= 1, to avoid accumulation of the 
wavefunction into full-size arrays, thus restarts and runs over several jobs should use the 
same value. 

The modules affected (to a greater or lesser extent) include:  

checkpoint 
communication_parameters 
distribute_wv_data 
global_linear_algebra  
inner_propagators 
inner_to_outer_interface 
io_routines 
kernel 
local_ham_matrix 
mpi_communications 
outer_hamiltonian 
outer_hamiltonian_atrlessthanb 
outer_to_inner_interface 
propagators 
wavefunction 
tdse   (main program) 
 
The major set-up (and the main communication during iterations) for the data transfer within 
mpi_comm_block is in outer_hamiltonian.f90 The routine test_outer_hamiltonian 



originally worked out and set up the required channel couplings for the various potential terms 
in the multiplication of the wavefunction vector by the Hamiltonian matrix at each step. It now 
also identifies the coupled channels as being on the same or a separate MPI task. Having 
worked out these couplings, arrays are set up listing the coupled tasks and the channels 
required to be transferred. It is assumed that if channel ‘a’ is coupled to channel ‘b’, then 
channel ‘b’ is coupled to channel ‘a’ and thus a series of MPI_SendRecv calls occur in the 
same order for each task in the communicator as the channels are cycled through in ascending 
order. The set up goes through each part of the Hamiltonian potential (‘we’, ‘wp’, ‘wd’) in turn 
checking for new channels to be accumulated in the wavefunction arrays, For ‘wp’ potentials, 
a list of channels whose wavefunction derivative needs to be sent is also made.    

Arrays to hold actual wavefunction data, refreshed at each iteration, are set up to contain all 
the channels required:   
psi_from_neighbours(:), psi_to_neighbours(:),  
deriv_psi_from_neighbours(:,:), deriv_psi_to_neighbours(:,:) 
The arrays are allocated in test_outer_hamiltonian and are used to transfer data within the 
communicator. The first dimension of deriv_psi_from_neighbours is (x_last–x_1st+1), the 
second is the maximum value of the number of channels a task needs to receive. The 
dimensions are collapsed in psi_from_neighbours as this is also used in module 
outer_hamiltonian_atrlessthanb and dimension size is set according to which is the greater 
of (x_last–x_1st+1) and (2*nfdm–half_fd_order).  

The arrays are used in new routines prep_w_comm_block_ham_x_vector_outer and 
prep_deriv_w_comm_block_ham_x_vector_outer which are called at the start of the main 
iteration loop in ham_x_vector_outer (once for each solution isol = 1, numsols). These 
perform all mpi_comm_block transfers required for subsequent calls to the various routines 
‘incr_<…>’ called from apply_long_range_potential_matrices further in the loop. The 
incr_<…> routines split the loop over connected channels into two loops, for those purely on 
the local task and those collected from other tasks into the psi_from_neighbours (and 
deriv_psi_from_neighbours) arrays.  

The ‘channel size’ part of the dimension of psi_to_neighbours depends on a logical 
parameter sendrecv_yes, currently hardwired to .true. as a module parameter. In this setting 
MPI_SendRecvs are used to transfer data between tasks and psi_to_neighbours can be 
reset before each call. A second option uses MPI_ISend and MPI_IRecv, with an 
MPI_WaitAll call at the end of the loop over the linked tasks. In this case psi_to_neighbours 
must range over all the channels that need to be send to other pes as it cannot be overwritten 
before the MPI_WaitAll command, so it is more memory intensive (the sendrecv_yes flag is 
checked at allocation). As long as the above rule for potential coupling is satisfied, this option 
should not be needed, but can be tested for efficiency.  

Note: while introducing the new parallelization, it was noticed that an internal legacy variable 
mpi_comms_method_desired in module communications_parameters was set 
(hardwired) in the code to a parameter use_sends_recvs rather than use_mpi_collective. 
This affected various communications already present between regions and in the outer region 
(mainly in module mpi_communications). The parameter was reset to use MPI collectives. 

  



(3.1) MPI verses OpenMP 

The OpenMP commands already present in the code are unaffected apart from one case. This 
means that MPI parallelisation and OpenMP parallelisation can be combined flexibly to fit the 
configuration of the hardware. Examples of this are given below. The MPI parallelisation may 
be limited by available memory on nodes, OpenMP parallelisation by node substructure: on 
ARCHER2 OpenMP threads are usually limited to a maximum of 8 for efficient use.  

The one OpenMP loop affected by the MPI change is the main iteration loop in 
ham_x_vector_outer. The original code uses a collapsed OpenMP directive to parallelise 
over the solutions loop (1:numsols) and the immediately following loop over channels. In the 
new code, due to the need to call the prep_<…> routines, the OpenMP parallelisation is over 
my_num_channels and the loop over solutions above it is serial. This means that for runs in 
which numsols > 1 pure OpenMP runs may be slightly less efficient as the numsols loop is 
embarrassingly parallel with no communications. This will be investigated further (outside the 
scope of the eCSE): the test results show that for large cases invoking parallelisation over 
channels the efficiency gains outweigh this loss. Other cases where loops are collapsed for 
OpenMP parallelism are unchanged. 

(3.2) Sample test results 

We show results for some of the RMT test suite cases examined in section 2. The particular 
cases are not expected to show large performance advantages. The coding was validated for 
accuracy against all the test cases. For the Ne+ example, with 10 inner region pes the outer 
region time dominates and number_of_pes_per_sector = 2 substantially reduces wall clock 
time. The inner region time subsequently dominates. In the neon case, the behaviour is similar 
for 120 inner pes: reducing these to 41 and keeping number_of_pes_per_sector = 1 gives 
better performance than 120 IR pes and number_of_pes_per_sector = 2, In the 120 case, 
the actual outer region time per iteration scales perfectly. For Ar_LS, the outer region time 
dominates for 63 inner pes, and scaling is near perfect, giving an overall performance 
improvement. For Ar_jK, the numbers show that using 83 inner pes with 
number_of_pes_per_sector = 1 costs 0.16 CUs while 196 inner pes with 
number_of_pes_per_sector = 2 costs 0.1 CUs. 

Ne+:   10 LML (L) blocks, 10 inner pes, 72 * n outer pes, full time in seconds (guide)  
Number of PEs per sector (n) Time (Seconds) 

1 114 
2 76 
3 73* 

* outer time per iteration: 0.005, inner time: 0.013 
 
Ne:   71 LML (L) blocks, 72 * n outer pes, full time in seconds (guide) 

Number of Pes 
per sector (n) 

Time 
(seconds) 

Number of Pes 
per sector (n) 

Time 
(seconds) 

Time breakdown (per 
iteration) 

41 Inner PEs 120 Inner PEs Inner (s) Outer (s) 
1 189 1 108 0.018 0.014 
2 182 2 85 0.014 0.007 
  3 86 0.014 0.005 

 
  



Ar_LS:  196 LML blocks (405 channels), 63 inner pes, 82 * n outer pes, full time in seconds 
(guide) 

Number of PEs per sector (n) Time (Seconds) 
1 1009 
2 530 
3 383 

 
 
Ar_jK: 169 LML blocks (1344 channels), 143 * n outer pes, time in seconds for 1460 timesteps 
(guide) 

Number of Pes 
per sector (n) 

Time 
(seconds) 

Number of Pes 
per sector (n) 

Time 
(seconds) 

83 Inner PEs 169 Inner Pes 
1 319 1 246 
2 312 2 105 
3 320 3 101* 

* outer time per iteration 0.044, inner time 0.06 

We may now look at some figures for larger cases before examining the combined inner and 
outer parallelisation in detail. For the F- case, decreasing the number of inner region tasks 
from 20 to 5 nodes halves the CU cost as outer region time dominates. Doubling the number 
of outer region tasks nearly halves the execution time and slightly reduces the overall charged 
time. In the ‘smaller’ Xe case, the original outer region run used 8 OpenMP threads per MPI 
task (with 1 thread per task in the inner region). With 29 inner region blocks, the timing is 
slightly improved by replacing the OpenMP with number_of_pes_per_sector = 8. Using 
fewer inner region blocks (5), has a CU cost. We will see that an intermediate number of inner 
region tasks can maintain the CU efficiency of the 53 node case.    

F-: 2500 symmetries, 3774 channels (times for 100 cycles) 
Nodes IR Pes OR PEs OR PEs per sector Wall time  Charged time 
30 2560 1280 1 14.7 441 * 128 
15 640 1280 1 14.7 221 * 128 
25 640 2560 2 8.4 210 * 128 

 
Xe: 3619 LML blocks,   16278 channels, (times for 100 cycles) 

Nodes OR nodes OR tpn* IR PEs n** Threads Wall time CUs/100cyc 
29 24 16 640 1 8 40.7 0.33 
29 24 128 640 8 1 40.7 0.33 
53 24 16 3712 1 8 17.3 0.25 
53 24 128 3712 8 1 14.5 0.21 

 
 [outer time per cycle (s):  0.17 for n=1, 8 threads; 0.14 for n=8, 1 thread] 
* tpn = tasks per node 
** n = number of OR PEs per sector 
 
The larger Xe test case needs the OpenMP parallelism to make full use of ARCHER2’s 128 
cores per node as its memory requirements mean there can be a maximum of 4 (rather than 
8) MPI tasks per CCD (compute complex die) in the outer region. As with the smaller case, 
OpenMP is used in the outer region (up to 4 threads here) but not the inner region.  

  



Xe: 8635 LML blocks, 38850 channels, (times for 100 cycles) 

Nodes OR nodes OR tpn IR nodes n Threads Wall time CUs/100cyc 
124 56 32 68 1 4 75 2.6 
124 56 64 68 2 2 70 2.4 
180 112 64 68 4 2 39 2.0 
80 56 32 24 1 4 75 1.7 
80 56 64 24 2 2 71 1.6 
136 112 64 24 4 2 61 2.3 

          

In this case the channel parallelization improves the 68 inner nodes test, but the flexible inner 
region parallelization gives the best benefit. A wider range of combinations of inner and outer 
core numbers was tried for the three larger test cases. Generally the all-MPI outer region 
outperforms the 1-sector task plus OpenMP approach to a small extent, though the large tests 
all ask for a single solution (numsols = 1). 

 

(4) Combined ‘best’ parallelisation 

Here we present charts of ‘CUs per 100 time steps’ for the three larger test cases using a 
range of choices of task combinations. We show the optimum performance across various 
total node counts, followed by a breakdown of points showing the different combinations. A 
direct algorithm for ‘instant’ detailed matching of inner to outer node use is very much case-
dependent, but we may provide a straightforward guide for preliminary performance tests 
before a very large simulation is run, (see the next section) to minimize computational costs. 

(i) F- 

The optimum choice of inner and outer division of node use gives a consistent performance 
across a range of nodes (the numbers from the previous F- figure are included for 
convenience): 

 

 

Figure 5: ARCHER2 optimal computation cost for various node counts, F-. 



The original code test requires 10 outer nodes and 20 inner nodes. The optimum combinations 
give a fairly consistent performance of between 0.04 and 0.05 CUs per time step up to a total 
of 80 nodes, meaning that the same calculation can be performed in a fraction of the time for 
the same cost. The best performance is given for 3 inner and 10 outer nodes, but if wall-clock 
time is to be prioritised than the 80-node combination (30 inner plus 50 outer: 
number_of_pes_per_sector = 5) runs 5 times as fast. Note that at 30 nodes we get a factor of 
2 speed-up form the original code (with a change from 20+10 to 10+20 inner+outer nodes). 

The breakdown of performance is as follows: 

 

Figure 6: ARCHER2 computation cost breakdown for various node counts, F- 

The general pattern is that using the outer channel parallelization improves performance as 
long as outer time is dominant, then adds to the cost. The light blue points represent the earlier 
values (the two values for 30 nodes show two calculations and give an idea of timing variation 
on ARCHER2.  

(ii) Xe (smaller case) 

The optimum choice of node distribution again gives slightly different behaviour to the F- case: 

 

Figure 7: ARCHER2 optimal computation cost for various node counts, Xe (3619). 



The case requires a minimum of 384 MPI tasks in the outer region to define the outer grid and 
these use 1 CCD (8 cores) each for memory reasons, thus the outer region node count is 
generally 24, except for tests with number_of_pes_per_sector = 12 which have 36 outer 
nodes. The original case used 29 inner region nodes (the smallest number with more than 
3619 cores). The points above the optimal results (with 24 outer nodes and increasing 
numbers of inner nodes) illustrate the successive effects of the inner region serial optimization 
and the all-MPI outer region (number_of_pes_per_sector = 8). As more inner region nodes 
are added, the serial optimization, which at lower core counts brings more arrays fully into L3 
cache, has a smaller effect as the original complex arrays are smaller. Compared to the 
original code, CU use for this case has been reduced by 1/3 for the main simulation (with some 
start-up overhead only noticeable for short runs).  

The breakdown of the optimal node distributions is summarized as: 

 

Figure 8: ARCHER2 computation cost breakdown for various node counts, Xe (3619). 

While this data may look confusing to begin with, the main rule to take away is that with the 
outer region MPI parallelization in place, the performance is reasonably constant for 36 (12 
inner) nodes through to 47 (23 inner nodes) and 53 (29 inner) nodes. It is still reasonable for 
55 nodes (21 inner nodes plus 36 outer nodes) and acceptable for fast wall clock times up to 
70 nodes. The particular high performance point here is for 21 inner nodes and 24 outer nodes. 
The gap between 38 and 44 nodes is due to the algorithm used to distribute the inner region 
LML blocks among tasks producing load-balance warnings at these values. Some runs with 
the load-balancing restrictions partially lifted will allow sample results at these values, such as 
for 44 nodes with performance reduced, however the new Huffman tree coding and planned 
reduction in MPI calls (see section 2) should produce better results. Similarly, as the number 
of inner tasks becomes closer (from below) to the number of LML blocks (48-52 nodes) 
performance with the current algorithm is degraded. 

In this particular case the MPI channel parallelization has allowed a wider range of node 
choices for good performance. For the range of values tested, the complicated 
communications overheads stop there being a clear division between inner region dominance 
and outer region dominance.  

 



(iii) Xe (larger case) 

In this case, the optimized inner region code still produces the most efficient choice of node 
division. The improvement around 76 nodes relative to the previous figure is due to a mixture 
of some serial optimization, the choice of use_mpi_collective, and replacing 4-thread 
OpenMP in the outer region with number_of_pes_per_sector = 2 and using 2 threads. This 
optimization is helpful but relatively small around the optimized inner region values. The 
inner region serial optimization is less effective at the larger node counts where outer region 
work dominates (again the small differences between the yellow and grey results show the 
general timing variability of ARCHER2. The outer region parallelization allows reasonable 
performance at larger node counts if fast wall-clock time is needed. The ‘sweet spot’ at 110 
nodes has 26 inner nodes and number_of_pes_per_sector = 3 (2 threads). Compared to 
the original code test, the CUs per 100 cycles are altered by a factor ~0.6 from ~2.6 to ~1.6.  

 

Figure 9: ARCHER2 optimal computation cost for various node counts, Xe (8635). 

The performance of up to ~2 CUs per 100 cycles continues to 240 nodes as may be seen by 
the breakdown below. 

 

Figure 10: ARCHER2 computation cost breakdown for various node counts, Xe (8635). 



A similar pattern to the F- case may be seen as more MPI tasks are used for outer region 
channel parallelization. 26 inner nodes with 56 outer nodes is close to the 78 node (22+56) 
‘best’ performance, with 26 inner nodes and 84 outer nodes equally good, then 26 + 112 nodes 
losing the good performance. At higher inner region node counts such as both 68 and 75 inner 
nodes, the performance improves as number_of_pes_per_sector increases from 2 to 4, 
stays the same at 5 and starts to degrade slightly at 6. 

Sample timings, as opposed to CU use, for the F- and large Xe cases for ‘optimum’, ‘fast’ and 
‘intermediate’ node choices, can be found in the accompanying eCSE final report. 

 

(5) Summary 

In the large-scale benchmarks, the correct combination of inner and outer region 
parallelization has reduced the cost of a calculation by 1/3, and in one optimal case (F-), by 
½. The new flexibility also allows large calculations to be performed using a wide range of core 
counts at the same cost, so that users can choose whether to submit a longer running job 
requiring fewer nodes, or a larger job for faster turnover if ARCHER2 is not too busy. This 
flexibility also extends the range of hardware on which RMT may be run, from local parallel 
machines to Tier2 clusters, to ARCHER2 and even modern peta/exa-scale machines for large 
enough calculations. 

Some immediate follow up activities include:  

• Introduce the Huffman Tree approach to inner-region task allocation. This should be 
more efficient than the current distribution, and can allow mixing of the several tasks 
per LML block approach with the several LML blocks per task approach (and is already 
localized in module mpi_layer_lblocks). 

• Revisit the inner-region inner parallel set-up so that a single set of MPI_isend/irecv 
calls can produce all the off-node information required for the local LML blocks ready 
for the parallel_matrix_vector_multiply operations (as is now done in the outer 
region). This can re-introduce larger arrays than may be wished for in some cases but 
should in principle further reduce the amount of inner-region communications during a 
time step and thus further speed up the code. 

A single automated algorithm for the optimal distribution of tasks is not yet practical as the 
range of systems studied, from atoms to molecules, from linear to elliptical and circular 
polarization, with a full range of descriptions of ‘target’ electronic structure, is too large (any 
such algorithm will need further adjustment after the follow-up optimization above). However 
there is a relatively straightforward set of preliminary operations for large-scale simulations 
which we can recommend. To enable this, a commented line in the main control program tdse 
may be used for the preliminary tests: 

 !   alternative for detailed algorithm testing: 
 !        DO timeindex = start_of_chkpt_timeindex, start_of_chkpt_timeindex + 1000 
        DO timeindex = start_of_chkpt_timeindex, end_of_chkpt_timeindex 
 
where the ‘1000’ steps may be modified/reduced as required for the tests. The RMT standard 
output gives time taken for every 20 steps and may be examined to get the appropriate timing 



information. This approach means the calculation input is not affected and the test simulation 
just stops when wanted. 
 

• Having decided on the number of outer region subregions needed, begin with 
number_of_pes_per_sector = 1. Again decide on an appropriate initial number of inner 
region pes, either starting with one task per LML block, or (for simulations that have 
been run previously) a working larger number.  

o If needed, use a machine appropriate number of OpenMP tasks if memory per 
node is a problem  

• Run short tests which stop after a few hundred time steps (set in tdse.f90, the main 
program, or in input.conf) to see whether the inner or outer region is dominating: the 
timings_desired flag set true will produce data in (in particular) files 
timing_inner.<job_id> and timing_outer0.<job_id>  

o After timings have stabilized after start-up (and avoiding occasional points with 
longer timings due to I/O backup), the first column (iteration) gives roughly the 
working time in the inner/outer region, while the last column (eshare) gives 
roughly the idle wait time in this region, for a time step. 

• If the outer region seems to be dominating, back this up by doubling the number of 
outer region tasks and setting number_of_pes_per_sector = 2 (keep the number of 
OpenMP threads per task to the minimum required by memory). If time is halved, the 
outer region is dominating. Run with more outer pes and number_of_pes_per_sector 
increased by one until the CU cost increases (ie when performance does not increase 
linearly). 

• For both this set of outer pes and the original set with number_of_pes_per_sector = 
1 (ideally), reduce the number of inner region pes until the CU cost is minimized. 
Compare this to the previous cost figure.  

o If the new figure is substantially lower, use this number of inner tasks as a 
baseline and try increasing number_of_pes_per_sector. [On ARCHER2 this 
will be complicated by factoring in 128 (or 64 or 32 plus OpenMP) to make 
optimum use of each node. The RMT code already allows for separate MPI 
task/OpenMP thread combinations in the inner and outer regions. Example 
scripts are included in the test suite directory.]  

o If there is no significant difference, or if reducing the number of inner-region 
pes makes performance worse, try starting from larger numbers of inner region 
pes (more than the number of LML blocks) and once the outer region time 
dominates, increase number_of_pes_per_sector until no further CU cost 
saving can be made. Compare with the minimized inner region figure. 

• Choose the combination that suits your workflow for long simulations the best (ie 
minimize CU cost or minimize run time for a given cost. 

These tests follow a straightforward flow and can save significantly on the cost/run time for 
the large simulation. Users with more interest in physics than computational cost may find this 
process frustrating at first, but the preliminary work requires very short runs and can pay large 
dividends. Alternatively, we may think of these performance enhancements as providing 
reasonably good performance, even if the optimisation procedure is not followed. This is 
important for non-expert users- several ’gotchas’ which would have killed calculations 
previously (e.g. not allocating sufficiently many inner-region processors) have been lifted. 



Further work could enable even more user-friendly features, such as automatically assigning 
IR/OR PEs based on the available resource. 
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