Feéling under the weather:

Untangling future ocean warming in
West Antarctica
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CLIMATE IN CRISIS

'‘Doomsday’ glacier could melt faster than
previously thought

A new study of Thwaites Glacier suggests it might retreat at twice its recent rate in the future,
threatening to cause a substantial rise in sea level.
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'Doomsday Glacier' is teetering even closer
to disaster than scientists thought, new
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But what will the future look
like??




METHODS

] timeseries average

We use MITgecm (MIT General
Circulation Model), a

designed for
study of the atmosphere,
ocean, and climate.

1 year takes about 2 hours using
4CU

We run a number of

to look at the
evolution of ocean warming in
the area
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Unavoidable futureincreasein West

Antarcticice-shelf melting over the WHAT HAPPENS IN THE
twenty-first century FUTURE?

Received: 13 April 2023 Kaitlin A. Naughten®"' |, Paul R. Holland ®' & Jan De Rydt®?

Accepted: 23 August 2023

Published online: 23 October 2023 Ocean-driven melting of floating ice-shelves in the Amundsen Seaiis
—— currently the main process controlling Antarctica’s contribution to sea-level
rise. Using a regional ocean model, we present a comprehensive suite of
future projections of ice-shelf melting in the Amundsen Sea. We find that
rapid ocean warming, at approximately triple the historical rate, is likely
committed over the twenty-first century, with widespread increases in Evolution of ocean temperature
ice-shelf melting, including in regions crucial for ice-sheet stability. When

internal climate variability is considered, there is no significant difference — Historical

between mid-range emissions scenarios and the most ambitious targets of — Paris 1.5 °C

the Paris Agreement. These results suggest that mitigation of greenhouse
gases now has limited power to prevent ocean warming that could lead to
the collapse of the West Antarctic Ice Sheet.

M| Check for updates
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THE OCEAN IS SET TO
CONTINUE WARMING ...
BUT WHAT IS CAUSING

THIS WARMING?

l.e. the question that took
up the last two years of
my PhD!



Oceanography 101

(fluid mechanics with a ton of
approximations)



Cold fresh
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Increased
melting
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He who controls the spice controls the universe
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He who controls the spice controls the universe

Undercurrent Amundsen Sea
Warming



THE OCEAN IS SET TO
CONTINUE WARMING ...
BUT WHAT IS
CONTROLLING THE
UNDERCURRENT?

QUESTION




Observations show that
when these eastward
winds decrease, ice shelf
melting also decreases

f X in @ % O =

Strong Sensitivity of Pine Island Ice-Shelf Melting to

Climatic Variability

We know
INn the future, potentially
explaining the p



THERMODYNAMICS

We expect temperature and precipitation
(atmospheric thermodynamics) to also
Increase In the future.

JGR Oceans

Geophysical Research Letters’
Research Article & OpenAccess (© @ &

Drivers and Reversibility of Abrupt Ocean State Research Letter () OpenAccess € @

Transitions in the Amundsen Sea, Antarctica Decadal Variability of Ice-Shelf Melting in the
Justine Caillet 324, Nicolas C. Jourdain, Pierre Mathiot, Hartmut H. Hellmer, Jérémie Mouginot Amundsen Sea Driven by Sea-lce Freshwater Fluxes

First published: 20 December 2022 | https://doi.org/10.1029/2022JC018929 | Citations: 4 Michael Haigh B4 Paul R. Holland




QUESTION

ON CENTENNIAL TIMESCALES

WHAT IS THE MAIN DRIVER OF
WARMING??
‘Winds

Atmospheric
Thermodynamics

Future scenarios predict What will be the effects of
stronger, poleward - a warmer, wetter
shifted winds atmosphere?

)



How do we untangle the
effects of winds from those
of a wetter and warmer
atmosphere?




We use models!




METHODS

] timeseries average

| use MITgecm (MIT General
Circulation Model), a

designed for
study of the atmosphere,
ocean, and climate.

1 year takes about 2 hours using
4CU

4 experiments

9 ensemble members each
From 1920 to 2100



METHODS

] timeseries average

ATMOSPHERIC FORCING:

I

oy

ALL

model is forced with
high man-made
change

NONE

What would the
Amundsen Sea look
like if the industrial
revolution had never
happened?

WIND

Future worst-case winds
and

pre-industrial
thermodynamics

THERMO

Future worst case
atmospheric
thermodynamics
pre-industrial winds



WHAT HAPPENS TO
OCEAN WARMING UNDER
THESE DIFFERENT
EXPERIMENTS?

QUESTION
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EFFECT ON
WARMING

P-value CTRL vs. LENS

—— thermodynamic forcing
—— high emissions
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Potential temperature anomaly from pre-industrial mean
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QUESTION

IF THE WINDS AREN’T
THE CAUSE OF OCEAN
WARMING, WHAT IS?



Sea-ice melts

s Sea-ice forms

Cold fresh water

Warm salty
water




Less Sea-ice

Less Sea-ice
<_ T forms

melts

Cold fresh water

Warm salty
water




Cold fresh
water

Y




Freshening trends on the

continental shelf

Less sea-ice
melting
(less fresh
water)

Decreased
Freshening
(more dense)

Less sea-ice
forming
(less saltin
the water below)

Freshening
(less dense)

Increased freshening

(m/yr/century)

Sea Ice FW flux trend







Next steps”?

™" Northumbria
University
NEWCASTLE

Using ARCHER to run a
coupled ice sheet-

ocean model

Contributing to MISOMIP 2

Separating the effects of ice
shelf melt and sea-ice melt

Reproducing Naughten et al.,
2023 with ice shelf response
and continuing simulations up
to 2300



RESULTS

Resultl

The effect of human activity can only be separated from un-forced
scenarios from 2018

Result 2

The effects from a wetter and warmer atmosphere account for most
of ocean warming in the Amundsen Sea on centennial scales

Result 3

Future warming can be attributed to changes related to changes in
the trends in sea-ice production

Turner et al (2025) "Modelled centennial ocean warming in the Amundsen Sea driven by
thermodynamic atmospheric changes, not winds" - GRL [in review]

Get in Touch!
Questlons’? kather33@bas.ac.uk



EXTRAS
(for the curious)



Time

Priority CU Memory Simulations (d) Jobs
Check compiler High 1 30 120 224 2 17.5
Run present-day climatology High 3 30 360 1008 3 17.5
Kaitlin's transient boundary (180 High 3 210 2520 7056 3 175 18
years)
Pre-industrial transient boundary (180 Kol 3 510 5040 9408 A 17 5
years)
Run using trenfj trend on the Medium 3 30 790 672 5 55
thermodynamic var
Run using trend trend on the wind var Low 3 30 720 1008 3 2.5
Kaitlin's transient boundary more Low 5 110 5040 14112 3 17 5

members
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P-value
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Temperature on continental shelf, 200-700m (°C)
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Potential temperature anomaly from pre-industrial mean
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Anomaly with respect to NONE 1950 - 1960

total freshwater flux Fresh water flux from Fresh water flux from
(myr 1) melting (m yr=) freezing (m yr=1)

Sea-ice concentration (0-1)




Velocity trends at 118W (m s~ ! century1)
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Potential temperature anomaly from pre-industrial mean
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Trend in precipitation
Trend in air temperature (°C century™') {mm day~* century!)
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