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Nuclear Energy
• Nuclear energy provides clean, 

stable generation of electricity

• It plays a crucial role in helping the 
UK achieve Net-Zero by 2050

• By 2024, nuclear generation fell to 
38.2 TWh, 13.7% of the mix

• This is due to ageing plants and 
outages

• Declining nuclear output risks 
creating gaps in stable energy supply 
that must be addressed

• The UK has been actively pursuing 
advanced nuclear technologies for 
next generation reactors, such as 
AMR, HTGR

Britain's electricity generation by energy source (2021-2024)

Data Source: National Grid ESO
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Thermal Hydraulics Simulations
What a nuclear reactor looks like and how it works?

What a nuclear reactor looks like and how it works? ▪ Challenges
• Safety is the highest priority in nuclear 

reactor design and operation

• Detailed understanding of complex thermal 
hydraulic behaviours within the core is 
essential

• Direct experimental measurements under 
reactor condition is expensive or impractical

• Numerical simulation is a critical tool to gain 
insights into reactor physics and behaviour 

• Huge number of coolant channels and broad 
range of physical scales pose significant 
challenges to numerical simulations

• HPC serves as an powerful tool for 
addressing these challenges through 
advanced, large-scale modelling

A collage of several images of a nuclear plant
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Outline
Case study 1

▪ High-Fidelity Simulations to Improve Performance and 
Safety of Pressurised Water Reactors
ARCHER2 Pioneer Project (2021 – 2022)
by Charles Moulinec, Wei Wang, Bo Liu, Shuisheng He and Juan Uribe

Case study 2

• Assessment of the Performance and Passive Cooling 
Capabilities of High Temperature Gas-cooled Reactors 
using High-Fidelity Simulations

ARCHER2 Pioneer Project (2023 – 2025)
by Bo Liu, Charles Moulinec, Wei Wang

• Development of a cost-effective simulation tool for 
transient processes in High Temperature Gas-cooled 
Reactors
Industry Impact Fund (I2F) Project (2024)
by Bo Liu, Charles Moulinec, Wei Wang, Stefano Rolfo
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Case Study 1
▪ Modelling of a PWR rod bundle with clad ballooning 
• Over-heating of fuel rods - a common scenario in design-based nuclear reactor accidents

• Leading to localised fuel cladding "swelling" or "ballooning

• Potentially result in blockage of fuel channels, altering reactor’s thermal hydraulic behaviour 

Mean and RMS velocities were measured along 

horizontal lines (Line-1) of various axial locations [1]

[1] Creer, J., Bates, J. and Sutey, A., “Turbulent flow in a model nuclear 

fuel rod bundle containing partial flow blockages”, Nuclear Engineering 
and Design, 52(1), pp. 15–33 (1979).
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CFD modelling
▪ Cases simulated
• Two cases are simulated, including an isothermal case and a non-isothermal case

• Both URANS and LES methods were employed, using the k-ω SST turbulence model for URANS and the 
Wall-Adapting Local Eddy-viscosity (WALE) model for LES

Case U0 [m/s] T0 [℃] q [kW/(m2•s)] p [bar] Re0

1 1.737 29.4 0 1.2 2.98x104

2 0.7 282 60 156 7.73x104

Table 1 Flow and thermal conditions of the cases investigated 

Mesh size [ No. cells] Case 1 Case 2

URANS 598,845,312 615,906,432

LES 701,212,032 1,160,539,440

Table 2 Mesh sizes used in the simulations
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CFD modelling
▪ The CFD software used

• Open-source multi-purpose CFD software by 
EDF

• Finite volume method with unstructured mesh

• User-friendly GUI and well-designed user 
functions

• New version (v9) to come in summer 2025 
(with GPU acceleration as well as some 
other new features)

o https://www.code-saturne.org/cms/web/

o https://github.com/code-saturne/code_saturne

Threads / Nodes Time in solver Speedup Efficiency

32,768 / 256 19.826 1 100%

65,536 / 512 10.843 1.829 91%

131,072 / 1,024 5.301 3.740 94%

– 7B cell mesh

– 889M cell mesh

Threads / Nodes Runtime / s Speedup Efficiency

4,096 / 32 14.953 1 100%

8,192 / 64 7.245 2.064 103%

16,384 / 128 3.528 4.238 106%

32,768 / 256 1.908 7.839 98%

65,536 / 512 1.245 12.014 75%

▪ Scalability on ARCHER2

• Scalability tested for a lid-driven cavity flow

• Code_Saturne shows excellent parallel 
scalability on ARCHER2

https://www.code-saturne.org/cms/web/
https://www.code-saturne.org/cms/web/
https://www.code-saturne.org/cms/web/
https://www.code-saturne.org/cms/web/
https://github.com/code-saturne/code_saturne
https://github.com/code-saturne/code_saturne
https://github.com/code-saturne/code_saturne
https://github.com/code-saturne/code_saturne
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CFD modelling
▪ Simulation strategies
• Based on the mesh size and the scalability 

test, a maximum of 512 nodes (65,536 
CPU cores) is used

• Inlet boundary condition for the LES model

– a precursor turbulence predictor is run alongside the main model

– The predictor domain features periodicity in the flow direction to generate fully developed velocity profiles

– The profiles are transferred to the inlet plane of the main model at each time step
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Some results

x = x0    8.77Dh

x = x0    1.46Dh

x = x0 +1.46Dh

x = x0 +2.56Dh

x = x0 +3.65Dh

x = x0 +13.34Dh

Blockage

Flow
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Some results
▪ Temperature distributions in case 2
• Mean temperature along the centre line of subchannel No. 1 (URANS, LES )

• Mean temperature profiles over Line-1 at several axial locations (LES)
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Summary
• Both URANS and LES can well predict 

the flow redistribution near the 
ballooning, where LES gives slightly 
better predictions.

• LES predicts the RMS fluctuating 
velocity very well, especially in the near 
downstream of the ballooning, while 
URANS severely under-predicts it.

• In the non-isothermal case, local hot 
spots is predicted to form in the narrow 
gaps, and they are more likely to 
appear at the downstream side of the 
ballooning.
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Case study 2
▪ Modelling of Loss of Flow Accident (LOFA) in an HTGR core

• Why HTGR is interested? 

- HTGRs have been prioritised by the UK government as candidates for next-generation nuclear power 
systems

• What is LOFA?

- LOFA (Loss of Flow Accident) is a key accident scenario that poses challenges to safe operation of the 
reactor

- Understanding reactor behaviour under LOFA conditions is essential for ensuring safety

- During LOFA, decay heat removal involves complex physics, including 3D thermal conduction, radiation, 
and natural convection

• Challenges & solutions

- The long transient adds additional challenge to numerical modelling, even with HPC resources

- High-quality CFD simulations generate valuable data to support the development of engineering tools, such 
as SubChanCFD, a cost-effective coarse-grid method developed by our team.
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HTGR core configuration
• Prismatic reactor design featuring hexagonal fuel 

assemblies and graphite reflectors

• Helium used as coolant removes heat through 
cylindrical coolant channels

Reactor core Cross-sectional core structure
Standard fuel bock 
(J W Sterbentz, 2016)
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CFD modelling
▪ Computational domain

• The computational domain is based on a 1/12th 
sector

• Each fuel assembly consists of 10 standard fuel 
blocks stacking axially

• Graphite reflectors are added to the top and bottom 
of the heated fuel section:

– Upper reflector: 1.189 m

– Lower reflector: 1.585 m

• Upper and lower plena are considered to provide flow 
path for natural circulation of the coolant

• The plena are represented using simplified box-like 
geometries

• Bypass and cross-flow gaps are not considered
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CFD modelling
▪ Meshing

• Sub-meshes are first 
generated for the 1/12th 
sector of single fuel 
blocks and graphite 
reflectors 

• The final mesh is created 
by combining the 93 
individual sub-meshes 

• The total mesh size is of 
around 900 million cells
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CFD modelling

▪ Initial and boundary conditions 
(based on GA’s PMR-600)

• Coolant mass flow rate: 14.3484 kg/s

• Fuel power density: 31.6 MW/m3

• Coolant inlet temperature: 490 °C

• Coolant outlet temperature: ~ 950 °C

• Core outer surface: constant temperature at 490 °C

▪ LOFA simulation
• At LOFA onset, all inlets and outlets are replaced with wall 

boundaries to simulate a sudden pump trip

• Heating power is reduced to ~10% of the steady-state 
operation to represent decay heat 

• Natural circulation is expected to arise, driven by 
temperature gradients and density differences

Inlet

Outlet

Forced convection Natural circulation
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Sample results

▪ Core temperature distribution
• CFD simulation provides detailed, 3-D flow and 

temperature distributions

Slice 1 Slice 2 Slice 3

Slice 1

Slice 2

Slice 3
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Engineering tool development

▪ SubChanCFD [2]
• 3-D coarse CFD approach developed for simulation of 

various types of nuclear reactors

• Using well-validated empirical correlations for closure 
modelling

• Reduces computational cost by 2 - 3 orders of 
magnitude compared to conventional CFD

Computing mesh 
(coarse-grid CFD mesh)

Filtering mesh 
(subchannel mesh)

Subchannel correlation 
results used in CFD 

wall treatments

Baseline SubChCFD

CFD results used for 
computing subchannel 

quantities

Line 1

Line 2

RANS (k-ω SST) SubChanCFD

Recently extended for HTGRs

[2] Liu B, He S, Moulinec C, et al. Sub-channel CFD for nuclear fuel 

bundles[J]. Nuclear Engineering and Design, 2019, 355: 110318.
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Computational cost

▪ Meshes
• For both approaches, sub-meshes were initially 

generated to capture periodic patterns

• These sub-meshes were then combined to form the 
final mesh

• Final mesh sizes:

– SubChanCFD: ～60 million cells

– RANS CFD (k-ω SST): ～900 million cells

▪ Simulation on ARCHER2
• Estimated computational cost for 1,000 seconds:

– SubChanCFD (32 nodes): ～3,000 CUs 

– RANS CFD (256 nodes): ～120,000 CUs 
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Model validation

▪ Temperature field
• t = 503 seconds at Slice-2

 • The overall 
temperature and 
vertical velocity 
distribution patterns 
are in very good 
agreements between 
SubChanCFD and 
RANS

 

RANS SubChanCFD
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Model validation

▪ Line plots
• Line-1 at location of Slice-2 is used

• Temperature and coolant velocity 
predictions by the two approaches are 
in excellent agreement
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SubChanCFD simulation

• 3-stage evolution

– Rapid show-down      
(~5s)

– Redistribution               
(~5 - 100s)

– Re-development           
(> 100s) 

 

▪ Time history of 1000 s
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Summary
• CFD simulation of a LOFA transient in an HTGR is highly computationally intensive due to the large 

reactor core and the long duration of the transient.

• Thanks to the extensive computational resources provided by the ARCHER2 Pioneer Project, we 
conducted full core-scale simulations of the initial stage of the LOFA transient.

• The resulting high-quality CFD data not only enhances our understanding of the underlying physics but 
also serves as valuable benchmarking data for the development of engineering tools.

• This data was used to validate SubChanCFD, a cost-effective coarse-grid approach developed by our 
team.

• With this validated approach, LOFA simulations using SubChanCFD can extend beyond 1,000 seconds 
with significantly reduced computational cost.
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