ASSESSING AND REDUCING THE ENVIRONMENTAL IMPACT OF HPC

Adrian Jackson

With a lot of help from my friends

a.jackson@epcc.ed.ac.uk

Landscape

- Research, innovation and partnership continue to underpin the UK's commitment to:
 - achieving a net zero economy by 2050
 - respond to the challenges of climate change
 - live more sustainably.
- UKRI is committed to becoming net zero by 2040
- Digital Research Infrastructure (DRI) part of UKRI spending
 - Implies Net Zero DRI
 - Net means some parts can have climate impacts but that would mean other parts removing climate impacts
- Net zero:
 - Zero overall carbon emissions associated with X
 - Zero overall climate/environmental impact associated with X (general sustainability)

Background

- Large scale HPC using significant amounts of electricity
 - ARCHER2 ~3-4MW (~2500 papers)
 - Frontier ~23MW (+ cooling) (~15000 papers)
 - Aurora ~25MW (+ cooling)
- Two forms of climate impact to consider
 - Active/direct (scope 2)
 - Embodied/embedded (scope 3)
- Some things can be made directly (nearly) Net Zero
 - Electricity generation
- Other things not so much
 - Mining, fuel production, etc...

ARCHER2 context: historical power draw measurements

- Mean power draw from compute node cabinets: 3220 kW
- Measurements taken from the chassis management infrastructure

eρ

THE UNIVERSITY of EDINBURGH

Power draw by component

- Estimated loaded power draws for ARCHER2 components:
 - Some values measured by experiments and others provided by HPE engineers

Component	Notes	Idle (each)	Loaded (each)	Approx. %
Compute nodes	5860 nodes	1350 kW (0.23 kW)	3000 kW (0.51 kW)	80%
Slingshot interconnect	768 switches	100-200 kW (0.10-0.25 kW)	540 kW (0.70 kW)	10%
Other Cabinet Overheads	23 cabinets	100-200 kW (4.3-8.7 kW)	210 kW (9.1 kW)	6%
Coolant Distribution Units	6 CDUs	96 kW (16 kW)	96 kW (16 kW)	3%
File systems	5 file systems	40 kW (8 kW)	40 kW (8 kW)	1%
Service nodes	Negligible	-	-	
Total		1800 kW	3900 kW	

- Energy use dominated by compute cabinets; storage power not important
- Idle power draw of compute nodes is high

BIOS Setting

- Processor and system can be configured for different runtime modes
- Original ARCHER2 configuration called Power Determinism
- Performance Determinism keeps processor performance more consistent
 - Performance of multi-node parallel applications is determined by slowest node
 - Any extra power draw for performance above the slowest node is wasted power

Application benchmark	Number of nodes	Performance ratio PerfMode:PowerMode	Energy ¹ ratio PerfMode:PowerMode
CASTEP AI Slab	16	0.99	0.94
OpenSBLI TGV 1024 ³	32	1.00	0.90
VASP TiO ₂	32	0.99	0.93

¹Energy measured from on-node energy use counters – only reflects node energy use

- Performance impact is generally low expected to be lower where more nodes are used
- Energy savings measured using cabinet power in line with energy savings measured on compute nodes
 - Suggests that overheads on top of compute node power do not affect conclusions

CPU Frequency – impact on power draw

- As well as configuring the processor/node overall, can modify processor behaviour on the fly
- ARCHER2 configuration:
 - 2.25GHz processor frequency
 - turbo boost enabled
- New configuration
 - 2.00 GHz (no turbo boost)
- Can be done on a per application/per job basis

CPU Frequency – impact on performance

Application benchmark	Performance ratio	Energy usage ratio	Energy to performance ratio
VASP CdTe	0.95	0.88	1.08
GROMACS 1400k atoms	0.83	0.92	0.9
CP2K H2O 2048	0.91	0.93	0.98
LAMMPS Ethanol	0.74	0.92	0.8
CASTEP AI Slab	0.93	0.88	1.05
ONETEP hBN-BP-hBN	0.92	0.82	1.12
Nektar++ TGV 128 DoF	0.80	0.80	1

- All applications are more energy efficient at 2.0 GHz
- Looking at cost-efficiency would suggest:
 - Frequency set to 2.25 GHz: GROMACS and LAMMPS, Nektar++ [due to increased residency costs]

eμ

- Frequency set to 2.0 GHz: VASP, CASTEP, ONETEP, CP2K
- Default frequency: 2.0 GHz with strong advice to users to test impact on their software

CPU Frequency – impact on performance

- Reserved a full cabinet (256 nodes) and filled with copies of benchmarks
- Initially focused on applications which would be running at 2.0 GHz

Experiment	Cabinet energy use (kWh) ¹	v Node energy use (kWh) ²	Overheads (kWh)	% Overheads	Cabinet ratio to 2.25 GHz	Node ratio to 2.25 GHz
8-node VASP, 256 nodes, 2.25 GHz	43.9	35.3	8.6	19.6%		
8-node VASP, 256 nodes, 2.00 GHz	38.5	30.4	8.1	21.0%	0.88	0.86
Experiment	Cabinet energy use (kWh) ¹	Node energy use (kWh) ²	Overheads (kWh)	% Overheads	Cabinet ratio to 2.25 GHz	Node ratio to 2.25 GHz
Experiment 4-node ONETEP, 256 nodes, 2.25 GHz	Cabinet energy use (kWh) ¹ 128.2	Node energy use (kWh) ² 108.3	Overheads (kWh) 19.8	% Overheads 15.5%	Cabinet ratio to 2.25 GHz	Node ratio to 2.25 GHz

¹Calculated from instantaneous cabinet power draw measurements during benchmark runtime ²Sum of energies from all calculations in set that filled 256 nodes

- Energy savings measured at the node level clearly propagate to full cabinet energy use
 - Cabinet energy use includes interconnect switches and power overheads

Usage and renewable energy

• Once you have installed a system, use it as much as possible

Make good use of the embodied energy

- Electricity impacts can be reduced
 - ARCHER2 electricity is renewable
 - Purchased with REGO certificates (100% renewable generation)
- Leaves embodied costs (scope 3) THE UNIVERSITY of EDINBURGH

HPC climate impacts

- Three (maybe four) components to consider for climate impact
 - Active direct: Electricity to run the systems
 - Active indirect: Electricity to run the infrastructure
 - Embodied direct: The impacts to manufacture and install the systems
 - Embodied indirect: The impacts to manufacture and install the infrastructure/facilities
 Power Use
- Net Zero implies taking all of these to zero
 - Active could be "easy"
 - Embodied then comes to dominate

Power Usage Effectiveness

PUE

Total Power Used Power Used for Compute

PUE: 1 – Efficiency of 100% PUE: 2 – Efficiency of 50%

Embodied Climate Impacts

- Aim to estimate embodied carbon for a computing infrastructure
 - Net Zero Scoping Projects: IRISCAST
- Funded by the UKRI Net Zero Digital Research Infrastructures Scoping Project
 - https://net-zero-dri.ceda.ac.uk/
- Capture/calculate the climate cost of IRIS during a set of snapshot
 periods

DiRAC

DiRAC

Science and Technology

Facilities Council

- 24-hour run of the full infrastructure (subset of IRIS)
- Capture as much details as possible

THE UNIVERSITY of EDINBURG

Estimate/ballpark the "impact" of the whole system
 Qreen Mary UNIVERSITY OF

Carbon model

• Carbon model utilises energy values and a energy carbon intensity factor to create an overall carbon usage estimate

$$C_{ax}^p = E_x^p \times CM_e^p$$

ep

- Carbon intensity factor can be derived from various forms
 - Embodied carbon has multiple components
 - Electrical carbon intensity when manufacturing
 - Raw material extraction costs
 - Transport
 - Decommissioning and recycling

Carbon intensity

- Lower-level details are also available
 - Could account for local hosting conditions
 - Not currently considering this level of detail

Active energy usage

T

THE UNIVERSITY of EDINBURGH

Collected active energy

System	Cumulative energy used (k	Wh)
QMUL	1299.7	
CAM	261.5	
DUR	8699.9	
STFC CLOUD	3903.2	
STFC SCARF	4271.3	
IMP	943.9	
Total	19379.5	
Metric	Carbon Intensity Value	Active Energy Carbon (C_{ax}^{p})
	(gCO ₂ /kWh)	(kgCO ₂)
Low	50	969
Medium	175	3391.4
High	300	5813.8

PUE and Active Carbon Estimate

- Facility level active energy
 - Not collected for the IRISCAST snapshot process
 - Modelling using a range of PUE factors
 - Low: 1.1
 - Medium: 1.3
 - High: 1.6

eμ

Metric	Low			Mediun	n		High		
Active Energy Carbon (kgCO2)	969			3391.4			5813.8		
PUE Estimate	Low	Medium	High	Low	Medium	High	Low	Medium	High
Active Energy Carbon including Facilities (kgCO2)	1066	1260	1550	3731	4409	5426	6395	7558	9302

Highest high: **9302 kgCO2**

Lowest low: 1066 kgCO2

Embodied carbon estimates

- Estimated two values based on single node (*made up values*):
 - 400 kgCO, 1100 kgCO,
- Amount of embodied carbon to be attributed to the snapshot varies depending on lifetime assumptions

Embodied carbon estimate (kgCO ₂)		Embod estimat	ied carbon e (kgCO ₂)		
	400	1100	400	1100	
Server lifespan estimate	Embodied emission (kgCO ₂ per 24 hours)		Snapsh emissic (kgCO ₂)	ot embodie ons)	d
3	0.36	1.00	876	2409	
4	0.27	0.75	657	1806	
5	0.22	0.61	526	1445	
6	0.18	0.50	438	1204	Man
7	0.16	0.43	375	1032	of th

Climate change

https://i.dell.com/sites/csdocuments/CorpComm Docs/en/carbon-footprint-poweredge-R430.pdf

equivalents

https://i.dell.com/sites/content/corporate/corp-comm/en/Documents/dell-server-carbon-footprint-whitepaper.pdf

THE UNIVERSITY of EDINBURGH

Other stuff

- Buildings
 - Data centre building have some contribution
- Infrastructure embodied carbon

- No inclusion of cooling and power hardware in the embodied estimates, needs to be included
- Transformer, coolant, and fire suppressant gases?
 - 1kg of SF_6 is approximately equivalent to 23,500kg of CO_2
 - Potential for hidden impacts like these

Total estimated impacts (24 hour period)

		Total carbon footprint estimate (kgCO ₂) (Percentage active carbon)					
Server embodied	Server lifespan estimate	te Low – Low Medium – Medium Active High – High Act					
carbon estimate		Active Carbon Assumptions	Carbon Assumptions	Carbon Assumptions			
(kgCO ₂)							
400	3	1950 (55%)	5293 (83%)	10186 (91%)			
	5	1600 (67%)	4943 (89%)	9836 (95%)			
	7	1449 (74%)	4792 (92%)	9685 (96%)			
1100	3	3483 (31%)	6826 (65%)	11719 (79%)			
	5	2519 (42%)	5862 (75%)	10755 (86%)			
	7	2106 (51%)	5449 (81%)	10342 (90%)			

Overall impact

- 24-hour period
 - Embodied carbon estimate:
 - 375 2409 kgCO₂ _____ 140 9000 kgCO₂
 - Active carbon range:
 - 1066 9302 kgCO₂ \longrightarrow 4000 34000 kgCO₂
- Active looks bigger, 2-10x bigger
 - Can address in the near term
 - Active will reduce as the energy mix gets cleaner
- Embodied has very wide error margins
 - Other things look much lower impact (i.e. buildings)
- Comparator:
 - https://www.carbonindependent.org/22.html
 - Typical flight CO₂ emissions: 92 kgCO₂ per passenger per hour
 - Imaginary 24-hour flight for one person 2208 kgCO₂

"AWS to buy Cumulus data centre"

Currently 48MW, max available 960MW, likely 480MW

eρ

Carbon model

- Things the carbon model misses?
 - Minimise movement
 - Keep data where it is
 - Key for maximising energy efficiency
 - Minimise waiting on movement
 - Get data to where it needs to be before it is required
 - Key for maximising user efficiency
 - Minimise the maximum hardware required
 - Ensure "optimal" hardware used for a particular problem/use case
 - The "value" of what is being run

Net Zero really?

- Pitfalls we need to avoid
 - Focussing on the negative, the positive really should be something we should be pushing
 - Focussing on the metrics, because easily measured metrics don't really tell you anything
 - Ignoring upgrade benefits
 - Ignoring rebound effects
 - Ignoring displacement effects
- Properly Net Zero just for DRI assumes some carbon equivalent reduction
 - Could be heat recovery schemes or some carbon capture etc...

THE UNIVERSITY of EDINBURGH

Mitigating climate impacts from high performance computing

- Optimising operation of HPC facilities can help at a global level
 - Reduce overall power/energy required
 - More work to do on this (i.e. per job active management)
- Ensuring applications are optimised helps overall science per system/watt/£/\$
- Ensuring people only run what is necessary also helps
 - Culture and behaviour research interesting on HPC usage
- Improving the efficiency of manufacturing electronics also a big part of this

ep

Maintaining and repurposing hardware can help

THE UNIVERSITY of EDINBURGH